
GENERAL I Z ING LEARNED KNOWLEDGE
IN ANSWER SET SOLV ING

PATR ICK LÜHNE





GENERAL I Z ING LEARNED KNOWLEDGE
IN ANSWER SET SOLV ING

PATR ICK LÜHNE

University of Potsdam Hasso Plattner Institute

Knowledge Processing and
Information Systems Group

Operating Systems and
Middleware Group

Advisers Reviewer

Prof. Dr. Torsten Schaub Prof. Dr. Andreas Polze

Dipl.-Inf. Roland Kaminski

Javier Romero Davila, M. Sc.

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

September 2015





CONTENTS

1 INTRODUCTION 1

2 BACKGROUND 5
2.1 Answer Set Programming 5

2.1.1 Terminology 6
2.1.2 The Modeling Language of ASP 8
2.1.3 From Defining to Solving Logic Programs 12

2.2 Answer Set Solving 14
2.2.1 Conflict-Driven Clause Learning 15
2.2.2 Answer Set Solving with CDCL 16
2.2.3 Conflict Analysis 19
2.2.4 Clasp 22

2.3 Planning 23
2.3.1 The Planning Domain Definition Language 24
2.3.2 Plasp 26

2.4 Statistics: The Geometric Mean 29

3 KNOWLEDGE EXTRACTION 31
3.1 Recording Learned Conflict Constraints 33
3.2 The Named-Literals Resolution Scheme 33

3.2.1 Implementation 34
3.2.2 Example 35
3.2.3 Configuration Options 37
3.2.4 Implementation Considerations 38



VI CONTENTS

3.3 Postprocessing 40

4 DIRECT KNOWLEDGE FEEDBACK 41
4.1 Analyzed Problems and Factors 43
4.2 Experimental Design 45
4.3 Hypotheses 46
4.4 Results 48

4.4.1 Solving Time Curve 50
4.4.2 Planning Problems vs. Graph Problems 51
4.4.3 Selection Orders 51
4.4.4 Other Metrics 53

4.5 Discussion 54

5 KNOWLEDGE GENERALIZATION 55
5.1 Generating Candidates for Generalized Knowledge 57

5.1.1 Replacing Constants with Variables 58
5.1.2 Minimizing Conflict Constraints 59

5.2 Validating Candidate Properties 60
5.2.1 Search for Counterexamples 60
5.2.2 Proof by Induction 64
5.2.3 Simplified Proof Method 69
5.2.4 Discussion 70

6 GENERALIZED KNOWLEDGE FEEDBACK 73
6.1 Design and Implementation 76

6.1.1 Basic Implementation 76
6.1.2 Implementation Details 77

6.2 Evaluation 80
6.2.1 Experimental Design 81
6.2.2 Analyzed Problems and Factors 82
6.2.3 Results 84



CONTENTS VII

6.2.4 Discussion 87
6.3 Practical Applications 88

7 CONCLUSIONS AND FUTURE WORK 91
7.1 Contributions 91
7.2 Related Work 93
7.3 Future Work 94

REFERENCES 97

A RESULTS: DIRECT KNOWLEDGE FEEDBACK 101

B RESULTS: GENERALIZED KNOWLEDGE FEEDBACK 109





ABSTRACT

Constraint learning is one of themajor advances of answer set programming
(ASP) in the last decades. Unlike pure backtracking, modern answer set
solvers analyze encountered conflicts to acquire new knowledge. However,
learned knowledge is only valid for the currently solved problem instance.
This thesis presents multiple ways to reuse learned knowledge. A study in
the first part of this thesis demonstrates that solvers benefit from directly
reusing previously learned knowledge when solving the same instance again.
The second part of this thesis presents an unassisted algorithm that gener-
alizes learned knowledge given an instance of a planning problem. To this
end, the scope of learned properties is extended over the temporal domain.
The derived properties are then validated with a proof by induction. As an
alternative, this thesis introduces a novel, simplified proof method that ren-
ders knowledge generalization instance-independent.This proof method al-
lows generalized knowledge to be transferred to future instances of similar
structure. A pilot study shows that instances are indeed solved faster when
reusing generalized knowledge of a previous instance in this way.





ZUSAMMENFASSUNG

Constraint Learning ist einer der wesentlichen Fortschritte der Antwort-
mengenprogrammierung (ASP) in den letzten Jahrzehnten. Im Gegensatz
zu Backtracking analysieren moderne Solver auftretende Konflikte, um dar-
aus neues Wissen zu gewinnen. Dieses gelernte Wissen ist allerdings nur in
Bezug auf die gerade gelöste Probleminstanz gültig. Diese Arbeit stellt meh-
rere Wege vor, gelerntes Wissen wiederzuverwenden. Eine Studie im ersten
Teil dieser Arbeit zeigt, dass Solver vom direkten Wiederverwenden gelern-
tenWissens profitieren, wenn die selbe Instanz erneut gelöst wird. Der zwei-
te Teil dieser Arbeit stellt einen Algorithmus vor, der Wissen selbstständig
verallgemeinert, das bei Instanzen von Planungsproblemen gelernt wurde.
Zu diesem Zweck wird die Gültigkeit der gelernten Eigenschaften über die
Zeitdomäne erweitert. Die abgeleiteten Eigenschaften werden dann mithil-
fe eines Induktionsbeweises validiert. Als Alternative stellt diese Arbeit eine
neuartige, vereinfachte Beweismethode vor, die zur instanzunabhängigen
Verallgemeinerung von Wissen führt. Diese Beweismethode ermöglicht es,
verallgemeinertes Wissen auf zukünftige Instanzen ähnlicher Struktur zu
übertragen. Eine Leitstudie zeigt, dass Instanzen tatsächlich schneller gelöst
werden, wenn auf diese Weise verallgemeinertes Wissen wiederverwendet
wird, das von einer früheren Instanz stammt.





1
INTRODUCTION

Answer set programming (ASP) is a paradigm for declarative program solv-
ing [2]. Instead of specifying the control flow that leads to a solution, the
problem’s logic itself is described and finding the solution is left to a dedicated
solver. The idea is to express a problem in the syntax of a logic program in
such away that the solutions found by the solvers coincidewith the solutions
of the original problem. Commonly, logic programs are interpreted under
the stable model semantics introduced by Gelfond and Lifschitz in 1988 [12].

The solving process employed by most answer set solvers is based on the
classic Davis–Putnam–Logemann–Loveland algorithm (DPLL) [6, 5]. Many
modern solvers implement an enhanced version of this algorithm called
conflict-driven clause learning (CDCL) [3, 21].This algorithm employs learn-
ing, one of the major advances of answer set solving in the past decades.
Unlike the pure backtracking approach of DPLL, CDCL attempts to analyze
encountered conflicts and acquire new knowledge in the process. Learned
knowledge consists of conflict constraints, which are added to the problem



2 CHAPTER 1 INTRODUCTION

Figure 1.1: Two different instances of the maze problem.

specification to prune the remaining search space. This strategy often leads
to considerably reduced solving times compared to simple backtracking.

However, knowledge learned in this way is only valid with respect to the
currently solved logic program.Thus, it cannot be used again to solve future
programs, even if they sharemany properties. For example, consider the two
instances of the maze problem in Figure 1.1, which consists of finding the
shortest way out of a labyrinth. When solving the left instance, the solver
might learn that the blue token may not be moved west in the first step to
find the shortest way. This assumption is not true for the instance on the
right—there, the exit can only be reached bymoving west first. Nevertheless,
certain pieces of learned knowledge hold across all instances of a problem.
For instance, shortest solutions tomaze instances may never contain amove
west in the first step and a subsequent move east—that is, simple loops.

This thesis explores ways to reuse learned knowledge, with the ultimate
objective to overcome the issue that learned knowledge is bound to specific
instances. The first part of this thesis investigates how modern answer set
solvers benefit from reusing learned knowledge directly. For this purpose,
learned knowledge is recorded while solving an instance, and then the in-
stance is solved again, reusing some parts of the learned knowledge.

The second part of this thesis introduces multiple methods for general-
izing learned knowledge. The discussed methods split the problem of gen-



3

Figure 1.2: Two more instances of the maze problem that share the same do-
main, but differ in their initial states and goal conditions.

eralizing knowledge into two steps—generating candidates for generalized
properties and validating them thereafter. With these techniques, an algo-
rithm is designed that extracts and generalizes learned knowledge without
assistance, called the generalized knowledge feedback loop. Finally, a configu-
ration of this algorithm is derived that performs knowledge generalization in
such a way that generalized properties may be transferred to other instances
than they were learned from. To transfer knowledge, instances of the same
problem may differ in their initial states and goal conditions, but they must
share the same static environment (like the two instances in Figure 1.2).

STRUCTURE First, Chapter 2 recapitulates the theoretical background of
this thesis. Chapter 3 then details the prerequisite for reusing knowledge—
extracting it from the answer set solver. Building on this, Chapter 4 ana-
lyzes how solvers profit from reusing learned knowledge directly. In the sec-
ond part of this thesis, Chapter 5 explores various methods for generalizing
knowledge.These are then used in Chapter 6 to build and evaluate the gener-
alized knowledge feedback loop. Chapter 7 concludes this thesis by reflecting
on the contributions of this thesis and addresses related and future work.





2
BACKGROUND

This chapter covers the theoretic foundations of the research presented in
this thesis. First, Section 2.1 describes the concepts of answer set program-
ming andASP’smodeling language. Section 2.2 explains how answer set pro-
grams can be solved with the CDCL algorithm and learning. Planning prob-
lems, the planning domain definition language (PDDL), and plasp (a tool for
converting PDDL to ASP facts) are discussed in Section 2.3. After the logic-
related topics, Section 2.4 describes the geometric mean, which is used in
statistical evaluations in this thesis.

2.1 ANSWER SET PROGRAMMING

This section revisits the basics of answer set programming. First, essential
definitions are listed in Section 2.1.1. Section 2.1.2 describes the modeling
language of ASP, which is used to specify logic programs. Section 2.1.3 ex-
plains how answer set programs are represented in order to be solved later.



6 CHAPTER 2 BACKGROUND

Notations used in this thesis stem from the textbook Answer Set Solving in
Practice [9] by Gebser et al.

2.1.1 TERMINOLOGY

LOGIC DEFINITIONS The formal language for answer set programming has
a signature consisting of symbols for constants, variables, predicates, and
functions. Constants c,d,… are named objects in the given universe, while
first-order variables X,Y,… range over domains of such objects. Predi-
cates p, q,…map tuples of objects (arguments) to Boolean values (true and
false). In contrast, functions f, g,… map their arguments to objects. The
number of parameters of predicates and functions is called arity. Predicates
with arity 0 are also referred to as propositions.

Terms t are defined recursively:

All constants and variables are terms.

f(t1,…, tn) is a term if f is an n-ary function t1,…, tn are terms.

Building on this, atoms a, b,… are defined as follows:

t1 = t2 is an atom if t1 and t2 are terms.

p(t1,…, tn) is an atom if p is a predicate applied to terms t1,…, tn.

Terms and atoms that contain no variables are called ground terms and
ground atoms, respectively.

A literal l is either an atom a or its negation. Commonly, two types of
negation are distinguished. With default negation, ∼a refers to the absence
of information that a holds. In contrast, classical negation requires the com-
plement a to be provably known.

Clauses δ, ε,… are disjunctions (l1∨…∨ln) of literals l1,…, ln. Sometimes,
clauses are identified with the set {l1,…, ln} instead.



2.1 ANSWER SET PROGRAMMING 7

ANSWER SET SOLVING DEFINITIONS A normal logic program P is a finite
set of normal rules. A normal rule r has the form

r ∶ a0 ← a1,…, am,∼am+1,…,∼an

where a0 is either false or a ground atom, 1 ≤ m ≤ n, and a1,…, an are
ground atoms. a0 is called the head of rule r, denoted by head(r). The rule’s
body is body(r) = {a1,…, am,∼am+1,…,∼an}. The body holds if all positive
atoms {a1,…, am} are provably true and the negative ones {am+1,…, an}
are either false or unknown.

A rule r signifies that when its body holds, the head is derived to be true.
Additionally, let body(r)+ = {a1,…, am} and body(r)− = {am+1,…, an}. A
logic program P is enriched by adding new rules to P.

Facts are rules with an empty body, often written without ←. Facts rep-
resent properties that hold unconditionally. Integrity constraints are rules
whose head is false, also written as:

r ∶ ← a1,…, am,∼am+1,…,∼an

Integrity constraints eliminate solutions of P that satisfy their body. Thus,
additional integrity constraints can never introduce new solutions.

The reduct PA of a program P with respect to a set of ground atoms A is
defined in the following way:

PA = {head(r)← body(r)+ ∣ r ∈ P, body(r)− ∩A = ∅}

The reduct PA can be obtained by first removing rules entirely if they contain
negative literals ∼a with a ∈ A in their body. Then, all negative body literals
∼a in the remaining rules are eliminated.

Amodel of the programP is a set of ground atomsA such that head(r) ∈ A
for every rule r that satisfies body(r)+ ⊆ A and body(r)− ∩ A = ∅. Stable
models (or answer sets or solutions) of P are minimal models of PA with
respect to the ⊆ relation.



8 CHAPTER 2 BACKGROUND

Answer set solving is the process of finding stable models of a logic pro-
gram P. Logic programs are often specified in ASP’s modeling language. Ap-
plications that automatically perform the search for stable models are called
answer set solvers, or shortly solvers.

In the process of answer set solving, propositional variables (atoms and
bodies) are assigned Boolean values. Formally, the domain of assignments
of a program P is domain(P) = atom(P)∪ body(P). For simplicity, the term
literal is extended to refer to propositional variables (not only atoms) and
their negations. Assigning a propositional variable v a truth value is denoted
by its literals v (for true) or v (for false).

An ordered assignment A over domain(P) is a sequence (l1,…, ln) of
literals li ∈ {v, v ∣ v ∈ domain(P)}. The literals li stand for assignments of
propositional variables, and ln is the most recent one. An assignment is a
complete assignment if all ground atoms are uniquely assigned true or
false. All other assignments are called partial assignments. The proposi-
tional variables in A that are assigned true can be accessed with AT = {v ∈
domain(P) ∣ v ∈ A} and the false ones with AF = {v ∈ domain(P) ∣ v ∈ A}.

2.1.2 THE MODELING LANGUAGE OF ASP

ASP provides a declarative language to model logic problems under the sta-
ble model semantics. Solution of a program are later found with the help of
an answer set solver. The modeling language stems from the input language
that the grounding tool Lparse accepts [29].

In the modeling language of ASP, constants are numbers or identifiers
starting with a lowercase letter, such as 10, p, and holds. Variables start
with a capital letter—for instance, X or Robot. Atoms are written like iden-
tifier(arg1, arg2), where the identifier starts with a lowercase letter,
and the arguments may be either constants or variables. Other examples are
color(C), color(red), and parent(john, jill). Default negation is
identified with the keyword not.



2.1 ANSWER SET PROGRAMMING 9

Listing 2.1: ASP problem instance of Hanoi Tower.

1 #const moves=15.
2

3 peg(a; b; c).
4 disk(1..4).
5

6 init_on(1..4, a).
7 goal_on(1..4, c).

Programs in ASP syntax consist of rules of the form

sibling(X, Y) :- parent(Z, X), parent(Z, Y).

where :- is the inference symbol.The part left of :- is the rule’s head, while
its body is on the right. This rule, for instance, means that if two people X
and Y share a parent Z, both of them are siblings. The symbol :- is omitted
for rules without a body (facts).

To write integrity constraints, the head is left empty:

:- not paperFinished, deadlineOver.

This integrity constraint expresses that it may never be the case that a paper
is unfinished when the deadline is over.

As a simple example, consider the Hanoi Tower problem description
by Gebser et al. [9] in Listing 2.1. With the additional #const directive, a
constant moves is defined along with its default value 15. The semicolon
and .. are syntactic sugar and expand to the following facts:

peg(a). peg(b). peg(c).
disk(1). disk(2). disk(3). disk(4).

and so on. This program specifies the existence of three pegs (a to c) and
four disks (1 to 4), which initially reside on peg a. The program also defines
a goal—all disks should be on peg c within 15 moves. Which moves are



10 CHAPTER 2 BACKGROUND

Listing 2.2: ASP problem encoding of Hanoi Tower.

1 % Generating part
2 1 {move(D, P, T) : disk(D) : peg(P)} 1 :- T = 1..moves.
3

4 % Defining part
5 move(D, T) :- move(D, _, T).
6 on(D, P, 0) :- init_on(D, P).
7 on(D, P, T) :- move(D, P, T).
8 on(D, P, T + 1) :- on(D, P, T), not move(D, T + 1), T < moves.
9 blocked(D - 1, P, T + 1) :- on(D, P, T), T < moves.
10 blocked(D - 1, P, T) :- blocked(D, P, T), disk(D).
11

12 % Testing part
13 :- move(D, P, T), blocked(D - 1, P, T).
14 :- move(D, T), on(D, P, T - 1), blocked(D, P, T).
15 :- not 1 {on(D, P, T)} 1, disk(D), T = 1..moves.
16

17 :- goal_on(D, P), not on(D, P, moves).
18

19 % Displaying part
20 #hide.
21 #show move/3.

allowed and how they are performed is not yet defined. This program only
specifies the environment of a Hanoi Tower problem.

Listing 2.2 contains another program that defines the missing rules to
solve this Hanoi Tower problem.The program is divided into several parts.
The generating part uses a choice rule (line 2) to express that for every time
step T within the number of allowed moves (starting with 1), exactly one
disk must be moved to a peg. The head of this choice rule is a cardinality
constraint, which is satisfied when the number of elements it captures lies
within a lower and upper bound (left and right of the braces)—in this ex-



2.1 ANSWER SET PROGRAMMING 11

ample, both bounds are 1, which forces exactly one element to be chosen.
Which disk is moved to which peg is not specified, but instead guessed (by
expanding the rule to all possible disks and pegs using the predicates after
the colons and allowing exacly one choice at a time). At this point, illegal
moves might be generated, but this is checked later in the testing part.

The defining part introduces auxiliary predicates. Atom move(D, T) is
derivedwhenever any pegmoves at a time step T. Atom on(D, P, T) states
that a disk D is on peg P at time T. The rule in line 6 ensures that each disk
receives its initial position at time step 0, and because of line 7, moved pegs
assume their new position. Line 8 introduces inertia, causing pegs to stay at
their location if they are not moved. Lines 9 and 10 define when disks are
blocked on a peg. This happens if a smaller disk is on the same peg.

In the testing part, all invalid solution candidates are eliminated with the
help of integrity constraints. First, disks Dmay never bemoved if the smaller
one (D - 1), wherever located, is blocked at that moment (line 13). Line 14
excludes solutions where disks are moved even though they are blocked by
smaller disks. Line 15 ensures that disks always reside on exactly one peg
through another cardinality constraint. Finally, line 17 requires the goal to
be met—if one of the disks is not on the desired peg after 15 moves, the
solution candidate is discarded.

Thedirectives in the displaying part (lines 20 and 21) instruct the grounder
to only remember and show the names of the chosen actions. These com-
mands exist primarily for the user’s convenience.

The program in Listing 2.2 contains general rules of the Hanoi Tower
problem, whereas Listing 2.1 is a concrete instantiation of the problem—it
only contains facts. Splitting answer set programs into a problem encoding
(such as Listing 2.2) and corresponding problem instances (such as List-
ing 2.1) is a common approach in answer set programming. Also, the pattern
of splitting a program into parts similar to the above (generating, defining,
testing, displaying) is found in many encodings.

Taking together the two programs in Listings 2.1 and 2.2, the givenHanoi



12 CHAPTER 2 BACKGROUND

Tower instance can now be solved. For this purpose, the programs are given
to a grounder, for instance gringo, and the output is then passed to an answer
set solver such as clasp.1 Running these tools yields the following output:

move(4, b, 1) move(3, c, 2) move(4, c, 3) move(2, b, 4)
move(4, a, 5) move(3, b, 6) move(4, b, 7) move(1, c, 8)
move(4, c, 9) move(3, a, 10) move(4, a, 11) move(2, c, 12)
move(4, b, 13) move(3, c, 14) move(4, c, 15)

Indeed, the answer set solver has found a solution to the givenHanoiTower
problem instance within 15 moves.

2.1.3 FROM DEFINING TO SOLVING LOGIC PROGRAMS

Themodeling language of ASP provides support for first-order variables, de-
fault negation, and advanced rules, which are useful concepts for expressing
logic programs. However, answer set solving algorithms commonly require
the input program to be represented in a concise and uniform way free of
default negation. To that end, the input—afirst-order logic program—is con-
verted into such a representation prior to the solving process itself. A com-
mon representation uses nogoods. A nogood δ is a set of literals {l1,…, ln}
that is violated if all li ∈ δ are satisfied.

The conversion involves two steps. First, grounding translates the first-
order logic program to a ground logic program. Second, the program’s rules
are converted to a set of nogoods, simultaneously replacing default negation
with classical negation through completion.

GROUNDING Rules r of a first-order logic program P are ground rules if
they they contain no variables. The ground instances ground(r) of a rule r
are obtained by systematically replacing the variables in r with all possible

1These tools are part of thePotassco answer set solving suite and can be found on thewebsite
http://potassco.sourceforge.net/

http://potassco.sourceforge.net/


2.1 ANSWER SET PROGRAMMING 13

ground terms. The ground instantiation of a program P is:

ground(P) =⋃
r∈P

ground(r)

While in some cases, the program’s ground instantiation is sufficient to
compute the stable models, ground(P) can become an infinite set of rules2

(of which many are unnecessary in practice). For this reason, the grounding
procedure attempts to find a finite subset P′ ⊆ ground(P) that leads to the
same stable models as ground(P).

UNIFORM REPRESENTATION The completionnogoodsΔP are derived from
Clark’s completion [4], which translates default negation to classical negation.
They represent the program’s rules as nogoods over literals,

ΔP = ⋃
B∈body(P),B={l1,…,ln}

⎧⎪⎪⎨⎪⎪⎩

{B, tl1,…, tln},
{B, fl1},…,{B, fln}

⎫⎪⎪⎬⎪⎪⎭

∪ ⋃
a∈atom(P),bodyP(a)={B1,…,Bk}

⎧⎪⎪⎨⎪⎪⎩

{a,B1},…,{a,Bk},
{a,B1,…,Bk}

⎫⎪⎪⎬⎪⎪⎭
where t and fmap default negation to classical negation on the literal level:

tv =
⎧⎪⎪⎨⎪⎪⎩

v if v ∈ domain(P)
u if ∃u ∈ domain(P) ∶ v = ∼u

fv =
⎧⎪⎪⎨⎪⎪⎩

v if v ∈ domain(P)
u if ∃u ∈ domain(P) ∶ v = ∼u

The nogoods {B, tl1,…, tln} express that the body B of a rule has to be
true if all the literals li in B hold. In turn, the nogoods {B, fli} forbid the
body B to be true if one of its literals li is false. Similarly, the {a,Bi} no-
goods ensure that if a body Bi is true, its corresponding head atom a is de-
rived to be true as well. Conversely, nogoods {a,B1,…,Bk} prevent atoms
a to be true if no bodies Bi entail them. In the definition of ΔP, the set of all
bodies that have a as the head atom is denoted by bodyP(a).

2This is the case if the logic program employs functions or arithmetics.



14 CHAPTER 2 BACKGROUND

With certain programs P, called tight programs, the models of ΔP are
identical to the stable models of P. However, ΔP might produce more mod-
els than that. In this case, the excess models contain atoms that cannot be
derived from the original program P in a finite number of steps.These atoms
are only part of the models because they derive each other in a cycle. They
are thus referred to as unfounded sets.

In addition to the completion nogoods, loop nogoods ΛP are defined to
eliminate models with unfounded sets:

ΛP = ⋃
U⊆atom(P),EBP(U)={B1,…,Bk}

{{a,B1,…,Bk} ∣ a ∈ U}

EBP(L) = body(ESP(L))

ESP(L) = {r ∈ P ∣ head(r) ∈ L, body(r)+ ∩ L = ∅}

ESP(L) retrieves the rules that externally support a set of atoms L ⊆ atom(P).
The bodies of these rules are the external bodies EBP(L). The loop nogoods
then disallow atoms to be true if there are no external bodies supporting
them, that is, if they belong to an unfounded set U.

Together, ΔP and ΛP lead to the same stable models as P. With this rep-
resentation of first-order logic programs P in the form of ground nogoods
free of default negation, a search algorithm can now be applied.

2.2 ANSWER SET SOLVING

A classic algorithm for solving the satisfiability problem (SAT) is the Davis–
Putnam–Logemann–Loveland algorithm (DPLL) [6, 5]. DPLL is a search al-
gorithm that employs chronological backtracking.

Inspired by DPLL, conflict-driven clause learning (CDCL) is a search
algorithm implemented by many modern SAT and answer set solvers. The
CDCL algorithm was introduced by Bayardo and Schrag [3] and Marques-
Silva and Sakallah [21]. In contrast to DPLL, which just reverts the last de-
cision made by the algorithm whenever it encounters a conflict, CDCL at-



2.2 ANSWER SET SOLVING 15

Algorithm 2.1: Outline of conflict-driven clause learning (CDCL).

1 loop
2 compute deterministic consequences
3 if no conflict then
4 if all variables assigned then
5 return variable assignment ▷ solution
6 else
7 decide ▷ nondeterministic variable assignment

8 else
9 if top-level conflict then
10 return unsatisfiable

11 else
12 analyze conflict ▷ learn conflict constraint
13 backjump ▷ return to source of conflict

tempts to learn from conflicts in a procedure called conflict analysis. Due
to conflict analysis, the solver is able to backtrack multiple levels at the same
time and to prune the search space yet to traverse.This pattern is called back-
jumping or nonchronological backtracking and constitutes an important im-
provement of CDCL over DPLL.

This section describes the workings of CDCL. An outline of the general
algorithm is given in Section 2.2.1. Then, Section 2.2.2 describes how CDCL
is applied to answer set solving. Section 2.2.3 details the conflict analysis step
separately because it plays a vital role in this thesis. Finally, theCDCL answer
set solver clasp is briefly presented in Section 2.2.4.

2.2.1 CONFLICT-DRIVEN CLAUSE LEARNING

An outline of CDCL is given in Algorithm 2.1. The procedure starts with an
empty assignment and first computes deterministic consequences (line 2). In



16 CHAPTER 2 BACKGROUND

the beginning, the deterministic consequences are the assignments of propo-
sitional variables that can be derived from the input directly.

Then, CDCL distinguishes multiple cases. A conflict occurs if the cur-
rent assignment is inconsistent with the input program’s rules. If there is no
conflict and the assignment is already complete, the procedure has found
a solution (line 5). Often however, the deterministic consequences alone do
not lead to complete assignments.Then, the algorithm nondeterministically
assigns a truth value to one of the unassigned propositional variables (line 7).
This is called a decision and the resulting literal ld is the decision literal.

Sometimes, the assignment becomes inconsistent in the process, which
results in a conflict. In the event that the conflict is obtained from deter-
ministic consequences alone, the program has no solutions (line 9). Other-
wise, CDCL analyzes the conflict (line 12). As an outcome of this procedure,
CDCL derives a conflict constraint, which is added to the input program
in order to prune the future search space. The technique of memorizing in-
formation about conflicts is referred to as learning. After learning a conflict
constraint, CDCL undoes some of the last decisions and backjumps (line 13).

These steps are repeated to enumerate the input program’s solutions. If the
procedure does not return any assignment after traversing the entire search
space, the program is unsatisfiable.

2.2.2 ANSWER SET SOLVING WITH CDCL

DEFINITIONS Given a current assignment A, nogoods are unit if all literals
except one are assigned and the remaining literal is unassigned.The remain-
ing literal is called the unit literal. In order for the the unit nogood to be
satisfied, the complement of the unit literal must be assigned.The process of
iteratively identifying unit nogoods and assigning the complements of unit
literals is called unit propagation. In other words, unit propagation com-
putes the deterministic consequences until no unit nogoods remain.

If a literal l results from the unit propagation of a nogood ρ, ρ is called an



2.2 ANSWER SET SOLVING 17

antecedent or reason of l, denoted by reason(l). A literal might have multi-
ple antecedent nogoods. To resolve the ambiguity, reason(l) always returns
one of them (chosen arbitrarily).

If the ordered assignmentA = (l1,…, ln) is not yet complete and there are
no more unit nogoods left, a nondeterministic decision needs to be made.
Each literal l ∈ A is associated with a decision level, a nonnegative integer
stored in dlevel(l). All the literals that are assigned prior to any decision re-
ceive the decision level 0. To make a decision, an assignment ld on an unas-
signed propositional variable is made. Upon a decision, the decision level is
incremented by 1. The current decision level is referred to as dl.

PROCEDURE The general CDCL procedure in 2.1 can be applied to answer
set solving in order to enumerate the stable models of a logic program. In
accordance with the uniform nogood representation, CDCL is changed into
conflict-driven nogood learning. Algorithm 2.2 shows the concrete answer
set solving procedure (CDNL-ASP).

Thanks to the translation in Section 2.1.3, CDNL-ASP can restrict itself
to input programs P represented as sets of ground nogoods over atom(P) ∪
body(P). The algorithm starts with an empty assignment A, an empty set of
learned conflict constraints∇, and the initial decision level dl = 0 (lines 1–3).
To remain consistent with the program representation, conflict constraints
are also modeled as nogoods.

As in CDCL, the deterministic consequences are computed next via the
function propagate (line 5). This method performs unit propagation on ΔP

and∇ and additionally unfounded set checking with ΛP to falsify atoms that
belong to unfounded sets early.3

In the following case analysis, conflicts are detected if any nogood is vio-
lated with respect to the current assignment (line 6). Top-level conflicts oc-
cur when the violated nogood’s literals belong to decision level 0—implying

3Note that in practice, ΛP is not represented explicitly because the size of ΛP is exponential
in atom(P) × body(P) [10].



18 CHAPTER 2 BACKGROUND

Algorithm 2.2: CDCL applied to answer set solving (CDNL-ASP).

Input: A program P, its completion nogoods ΔP and loop nogoods ΛP

Output: A stable model of P or unsatisfiable
1 A ∶= ∅ ▷ assignment over atom(P) ∪ body(P)
2 ∇ ∶= ∅ ▷ learned conflict constraints
3 dl = 0 ▷ decision level
4 loop
5 (A,∇) ∶= propagate(P,∇,A) ▷ deterministic consequences
6 if exists ε ∈ ΔP ∪∇ with violated(ε,A) then ▷ conflict
7 if max({dlevel(l) ∣ l ∈ ε} ∪ {0}) = 0 then
8 return unsatisfiable

9 (δ,dl) ∶= analyzeConflict(ε,P,∇,A,dl)
10 ∇ ∶= ∇∪ {δ} ▷ learn conflict constraint
11 A ∶= A⊖ {l ∈ A ∣ dl < dlevel(l)} ▷ backjumping
12 else if AT ∪AF = atom(P) ∪ body(P) then
13 return AT ∩ atom(P) ▷ stable model
14 else
15 ld ∶= decide(P,∇,A) ▷ nondeterministic decision
16 dl ∶= dl + 1
17 dlevel(ld) ∶= dl
18 A ∶= A⊕ ld



2.2 ANSWER SET SOLVING 19

that there are no stable models (line 8). All the other conflicts are analyzed,
which results in a new learned nogood δ that is added to ∇ and a new de-
cision level dl (lines 9–10). This decision level is the one the algorithm then
backjumps to, undoing all the assignments made on higher decision levels
(line 11). The operation A ⊖ L stands for the elimination of the literals l ∈ L
from the ordered assignment A.

Next, complete and conflict-free assignments are detected, in which case
the corresponding stable model is returned (lines 12–13). If no conflict exists
and unit propagation did not make the assignment complete, a decision is
made and the decision level incremented (lines 15–18). To that end, a vari-
able that is unassigned with respect to A is nondeterministically chosen and
assigned a truth value. Complementary to ⊖, the operator ⊕ extends the
assignment A by the decision literal ld.

2.2.3 CONFLICT ANALYSIS

Conflict analysis is invoked whenever a conflict is detected (except for top-
level conflicts). The cause of a conflict is a nogood ε = {l1,…, ln} with li ∈
atom(P)∪body(P) that is unsatisfied with respect to the current assignment
A and the program P. The nogood ε is referred to as the violated nogood.
The task of conflict analysis is to derive a new conflict constraint δ (added to
∇) and a backjump level k.

Conflict analysis must guarantee the returned decision level k to be as-
serting. That means that after backjumping, the learned conflict constraint
δ becomes unit, leading to further deterministic consequences on that level.
Then, the solving algorithm can continue traversing the search space but
avoids running into the same conflict again thanks to the learned nogood δ.

IMPLICATION GRAPHS The process of deriving a conflict constraint δ can
be illustrated with the help of implication graphs [31]. A typical implication
graph is sketched in Figure 2.1.The implication graph’s vertices consist of the



20 CHAPTER 2 BACKGROUND

a
1

d
3

h
2

z
5

p
5

m
2

j
5

g
5

a
5

e
5

q
1

r
5

decision literal

s
5

c
5

b
5

Figure 2.1: A part of an implication graph showing decision level 5. On this
level, a conflict exists because the nogood ε = {d, r, s} (shown
in red) is violated under the assignment. Nodes stand for literals,
while edges illustrate the implication relationship.The lower part
of a node l denotes dlevel(l).

literals in the current assignment A (shown in the upper part of the nodes),
along with their decision levels (in the lower part). An edge from a vertex l1
to l2 exists if l1 has an antecedent nogood containing l2.

For instance, b has two incident edges from g and p. This means that b is
implied by g∧p. This must be the case because the underlying program con-
tains a nogood {g, p, b}—the antecedent nogood of b. This nogood became
unit after assigning g and p, resulting in the assignment b. Decision literals
have no antecedents and no incoming edges in the graph because they are
nondeterministically assigned and not deterministic consequences.

RESOLUTION In the example, nogood ε = {d, r, s} is violated. Conflict analy-
sis essentially consists of resolving this violated nogood until a certain point.

In Figure 2.1, r is implied by a ∧ c ∧ e ∧ q. Thus, the antecedent ρ of r is:

ρ = reason(r) = {a, c, e, q, r}

As r is contained in ε and r in ρ, the resolution rulemay be applied:

{a1,…, am, c}, {b1,…, bn, c}
{a1,…, am, b1,…, bn}



2.2 ANSWER SET SOLVING 21

This rule allows the two nogoods ε and ρ to be joined after removing both r
and r, producing a new nogood δ1:

δ1 = {d, s, a, c, e, q}

Under the current assignment, δ1 is also a violated nogood because its deter-
ministic consequences still lead to the conflict ε. However, δ1 can be added
as a learned nogood to avoid future conflicts under similar circumstances.

Before adding the nogood to∇, the proceduremay be continued by resolv-
ing further literals. Which and howmany literals are resolved is specified by
a resolution scheme. An advanced strategy found in modern solvers is the
first unique implication point (first-UIP) resolution scheme [7, 22]. Empir-
ical observations show that the first-UIP strategy performs better than other
resolution schemes [31]. With this strategy, literals on the current decision
level dl are resolved until the resulting nogood contains exactly one literal lf
on dl. Resolution proceeds in backward order of assignment, and literals on
levels lower than dl are not resolved.

If a literal is the only one that belongs to a certain decision level (such
as lf), it is called a unique implication point (UIP) of that level. lf is, more
precisely, the first UIP reached by resolution.

To obtain the first UIP in the given example, δ1 must be resolved further
to eliminate a, c, and e. This finally produces nogood δ2:

δ2 = {d, q,h, j}

In this nogood, j is the only literal that belongs to decision level dl and is
the first UIP. Other UIPs in Figure 2.1 are b and the decision literal z. In fact,
all decision literals are UIP because the other literals on the same level can
always be resolved to the decision literal.

The first-UIP resolution scheme is sketched in Algorithm 2.3. Iteratively,
the procedure resolves the most recent literal lf in δ with its antecedent ρ
(lines 3 and 6).This is repeated until only one literal on level dl remains—the
first UIP (line 4). Then, the backjump level k is computed as the maximum



22 CHAPTER 2 BACKGROUND

Algorithm 2.3: Conflict analysis with the first-UIP resolution scheme.

Input: A violated nogood ε, a program P, a set of conflict nogoods ∇, an
assignment A = (l1,…, ln), and the current decision level dl

Output: A derived conflict nogood δ and the backjump level k
1 δ ∶= ε
2 loop
3 f ∶= max{1 ≤ i ≤ n ∣ li ∈ δ } ▷ most recent assignment lf ∈ δ
4 if {l ∈ δ ∣ dlevel(l) = dl} ∖ {lf} = ∅ then
5 break ▷ first UIP lf found

6 δ ∶= (δ ∖ {lf}) ∪ (reason(lf) ∖ {lf}) ▷ resolution

7 k ∶= max{dlevel(l) ∣ l ∈ δ ∖ {lf}} ▷ backjump level k
8 return (δ, k)

decision level of the literals in δ except for the first UIP lf (line 7).The derived
conflict constraint δ and k are finally returned.

When the solver backjumps to the decision level k, all literals in δ but lf
stay assigned. Hence, unit propagation will result in the assignment of lf. For
this reason, δ and k are asserting.

The first UIP can always be found because in the worst case, the first-UIP
scheme resolves all literals on decision level dl to the decision literal ld (z in
the example). Thus, the condition in line 4 must be fulfilled at some point,
at the latest when reaching ld (ld cannot be resolved further and is a UIP).

2.2.4 CLASP

Clasp is a high-performance answer set solver of the Potassco collection.
Clasp is based on the CDCL algorithm and provides many configuration
options controlling certain implementation details and optimizations, such
as additional preprocessing steps and decision heuristics. Conflict analysis is



2.3 PLANNING 23

implemented with the first-UIP resolution scheme but uses clauses instead
of nogoods to represent conflict constraints. However, both representations
are equivalent because a clause (l1 ∨… ∨ ln) can be translated to a nogood
{l1,…, ln} with the same meaning and vice versa.

All implementations in this thesis solve answer set programs with clasp
(in conjunctionwith the Potassco grounder gringo), and the evaluations use
clasp’s rich statistical output.

2.3 PLANNING

Planning is a decision-making problem that aims at achieving a specified
goal from a given initial state [13]. For this purpose, sequences of actions
are determined that, when applied, successively transform the initial state to
subsequent states that accomplish the goal.

States describe the static and dynamic environment of the planning prob-
lem. Static properties (such as the size of a chess board) are called domain
properties, while fluents represent the mutable characteristics of the envi-
ronment (for instance, the position of a chess pawn). The initial state con-
sists of facts specifying the fluents that shall hold in the beginning. Comple-
mentary, the goal situation describes properties that are requested to hold
in the end.While the goal situation may define few properties and leave oth-
ers open, the initial statemust be completely described by its fluents (in other
words, it may not be partial).

Actionsmanipulate some of the fluents (causing effects) andmay require
certain fluents to hold in order to be performed (preconditions). Applying
an action is legal if the preconditions are met with respect to some state. Ac-
tions are applied one by one.The order in which actions are executed is com-
monly identified with consecutive time steps. The initial state corresponds
to time step 0 and the first action is applied at time step 1.Then, the resulting
successor state is established in time step 1, and so on.

Plans are sequences of actions. Given an initial state and a goal situation, a



24 CHAPTER 2 BACKGROUND

plan is valid if all actions are legal with respect to the state sequence induced
by the plan and the goal situation is satisfied. Automated planning is the
process of finding valid plans computationally.

2.3.1 THE PLANNING DOMAIN DEFINITION LANGUAGE

The planning domain definition language (PDDL) was specified by Mc-
Dermott et al. [14]. PDDL stems fromSTRIPS, a language developed byFikes
andNilsson to describe planning problems [8]. STRIPS instances contain an
initial state, a goal situation, and a set of actions alongwith the necessary pre-
conditions and effects. PDDL provides a number of extensions to STRIPS,
such as conditional effects and preferences.

Listing 2.3 illustrates the basic syntax and semantics of PDDL with a sim-
ple encoding of the Travelling Salesperson problem. The first two lines
state the name of the domain tsp and declare that typing information is used
by the encoding. Then, the type vertex is declared (line 3) and four pred-
icates are introduced: move, at, linked, and visited (lines 4–7). There,
identifiers preceded by ? denote the names of variables, while identifiers
following the character - specify the variable types. Finally, the encoding
defines the action move by stating its parameters to be vertices (line 9) and
listing the preconditions and effects (lines 10–14). Conjunctionswith and are
available to enumerate multiple preconditions and effects. The meaning of
the precondition of move is that to travel fromA to B, the salesperson has to
be in A and there must be a link between A and B. After applying the action,
the salesperson is at B, not at A anymore, and has visited the destination.

Like inASP’smodeling language, PDDL specifications are commonly split
into a problem encoding (domain description) and a problem instance (prob-
lem description). Listing 2.4 shows the PDDL definition of a trivial instance
of the traveling salesperson problem. In the first two lines, the instance is
named tsp-instance and the domain tsp, which the instance belongs to,
is specified. Three locations (called Berlin, Hamburg, and Hannover) are



2.3 PLANNING 25

Listing 2.3: PDDL encoding of the Travelling Salesperson problem.

1 (define (domain tsp)
2 (:requirements :typing)
3 (:types vertex)
4 (:predicates (move ?v1 ?v2 - vertex)
5 (at ?v - vertex)
6 (linked ?v1 ?v2 - vertex)
7 (visited ?v - vertex))
8 (:action move
9 :parameters (?v1 ?v2 - vertex)
10 :precondition (and (at ?v1)
11 (linked ?v1 ?v2))
12 :effect (and (at ?v2)
13 (not (at ?v1))
14 (visited ?v2))))

Listing 2.4: PDDL instance of the Travelling Salesperson problem.

1 (define (problem tsp-instance)
2 (:domain tsp)
3 (:objects Berlin Hamburg Hannover - vertex)
4 (:init (at Berlin)
5 (linked Berlin Hamburg)
6 (linked Hamburg Berlin)
7 (linked Berlin Hannover)
8 (linked Hannover Berlin)
9 (linked Hamburg Hannover)
10 (linked Hannover Hamburg))
11 (:goal (and (at Berlin)
12 (visited Berlin)
13 (visited Hamburg)
14 (visited Hannover))))



26 CHAPTER 2 BACKGROUND

introduced in line 3. Then follow the initial state consisting of the start loca-
tion Berlin and the connections between the cities (lines 4–10). The goal
situation is stated at the end of the problem instance and requires the sales-
person to return to Berlin after visiting all the three cities (lines 11–14).

To find plans for PDDL definitions, problem encodings and instances are
solved with a planning system such as Hoffmann and Nebel’s FF [16].

2.3.2 PLASP

In contrast to dedicated planning systems, plasp is a prototypical system
that aims at solving planning problems with an answer set solver [11]. This
requires the PDDL specification to be first translated to ASP. However, with
this translation, plasp can rely on the already existing andmature infrastruc-
ture for answer set solving.

Listings 2.5 and 2.6 show how the PDDL encoding and instance in List-
ings 2.3 and 2.4 are translated to ASP by plasp. In Listing 2.5, the property
linked was translated to a domain predicate denoted by holds, which en-
ables the move action (line 3). The actions’ preconditions are defined by the
meta predicate demands (line 5). Effects of actions follow in lines 7–9 and
are denoted by adds and deletes.

The instance in Listing 2.6 lists all available locations (lines 1–3) and the
connections between them (lines 5–10). The initial state and goal situation
are specified with plasp’s init and goalmeta predicates (lines 12–17).

To solve this instance with an answer set solver such as clasp, an addi-
tional encoding is required that defines how plasp’s meta predicates should
be understood. Thismeta encoding is shown in Listing 2.7. Essentially, the
meta encoding establishes the initial state (line 5) and nondeterministically
creates a plan (line 8), whose maximal length is set by an external constant
horizon. The encoding prevents illegal actions (lines 11–12) and applies the
effects of the chosen actions (lines 15–18). In the end, the encoding verifies
that the plan meets the goal (lines 21–23).



2.3 PLANNING 27

Listing 2.5: Translation of Listing 2.3 to ASP with plasp.

1 object(X) :- typedobject(vertex(X)).
2

3 action(move(V1, V2)) :- holds(linked(V1, V2)).
4

5 demands(move(V1, V2), at(V1), true) :- holds(linked(V1, V2)).
6

7 adds(move(V1, V2), at(V2)) :- holds(linked(V1, V2)).
8 adds(move(V1, V2), visited(V2)) :- holds(linked(V1, V2)).
9 deletes(move(V1, V2), at(V1)) :- holds(linked(V1, V2)).

Listing 2.6: Translation of Listing 2.4 to ASP with plasp.

1 typedobject(vertex(hamburg)).
2 typedobject(vertex(berlin)).
3 typedobject(vertex(hannover)).
4

5 holds(linked(berlin, hamburg)).
6 holds(linked(hamburg, berlin)).
7 holds(linked(berlin, hannover)).
8 holds(linked(hannover, berlin)).
9 holds(linked(hamburg, hannover)).
10 holds(linked(hannover, hamburg)).
11

12 init(at(berlin)).
13

14 goal(at(berlin), true).
15 goal(visited(berlin), true).
16 goal(visited(hamburg), true).
17 goal(visited(hannover), true).



28 CHAPTER 2 BACKGROUND

Listing 2.7: Meta encoding for solving plasp encodings and instances.

1 % Maximum plan length, must be specified with -c horizon=<n>
2 time(0..horizon).
3

4 % Establish initial state
5 holds(F, 0) :- init(F).
6

7 % Perform actions
8 1 {apply(A, T) : action(A)} 1 :- time(T), T > 0.
9

10 % Check preconditions
11 :- apply(A, T), demands(A, F, true), not holds(F, T - 1).
12 :- apply(A, T), demands(A, F, false), holds(F, T - 1).
13

14 % Apply effects
15 holds(F, T) :- apply(A, T), adds(A, F), action(A), time(T).
16 del(F, T) :- apply(A, T), deletes(A, F), action(A), time(T).
17 holds(F, T) :- holds(F, T - 1), not del(F, T),
18 time(T), time(T - 1).
19

20 % Verify that goal is met
21 1 {terminal(T) : time(T) : T > 0} 1.
22 :- terminal(T), goal(F, true), not holds(F, T).
23 :- terminal(T), goal(F, false), holds(F, T).



2.4 STATISTICS: THE GEOMETRIC MEAN 29

When solving the three answer set programs together, clasp returns two
stable models. The first sequence of actions is:

apply(move(hannover, hamburg), 2)
apply(move(hamburg, berlin), 3)

and the sequence of the second solution is:

apply(move(hamburg, hannover), 2)
apply(move(hannover, berlin), 3)

These indeed correspond to the solutions of the original PDDL problem.

2.4 STATISTICS: THE GEOMETRIC MEAN

On several occasions in this thesis, solving times of answer set solvers are
measured to evaluate two competing implementations or configurations A
and B. Given a set of test instances {t1,…, tn}, a measurement is performed
once with each instance and configuration.The resultsmight look as follows:

instance configuration A configuration B factor

1 1 s 100 s 1/100
2 100 s 1 s 100

To assess whetherA has a benefit overB, themeasurements for each instance
are set in relation by computing the ratio ofA toB (right column). In the end,
all factors are averaged to make a general statement about A vs. B.

However, the arithmetic mean is a poor choice for computing the average
of the solving time ratios. In the above example, the arithmetic mean of the
factors is 50.005. It would be misleading to interpret this number as a slow-
down of factor 50 from A to B. In fact, the same number is obtained when
computing the ratio of B to A, which would mean that A was slower than B
and B slower than A at the same time.

Ratios and percentages are better dealt with by using the geometricmean.



30 CHAPTER 2 BACKGROUND

For numbers {x1,…, xn}, it is defined as follows:

μg = n
√
x1 ∗… ∗ xn

In the simple example, the geometric mean reflects the actual difference be-
tween the two configurations much better. 2√1/100 ∗ 100 = 1, meaning that
the results of both configurations are indeed comparable.

To calculate the mean μg, standard deviation σg, and a confidence interval
CIg = (xl, xh) with the geometric instead of the arithmetic mean, the input
measurements can be log-transformed [23]. For this purpose, the arithmetic
mean μa, standard deviation σa, and confidence interval CIa are computed
as usual on the transformed data. Finally, μg, σg, and CIg are obtained by
undoing the logarithm on μa, σa, and CIa with an exponential function.

While solving time ratios cannot safely be assumed to be normally dis-
tributed (which is the reason why the arithmetic mean is not applicable),
their logarithm is normal, at least to a greater extent. A normal distribution
of the logarithmized data is the condition for applying the geometric mean.



3
KNOWLEDGE
EXTRACTION

ModernCDCL solvers such as clasp gather knowledge in the formof learned
conflict constraints when solvingASP problem instances.This is an outcome
of conflict analysis (see Section 2.2).

Accessing the learned conflict constraints is essential for the present re-
search in two places. First, to analyze to which extent CDCL solvers benefit
from reusing learned knowledge by directly feeding it back to them (Chap-
ter 4). Second, the learned conflict constraints serve as a basis to generate
candidates for generalized knowledge in the implementation of the general-
ized knowledge feedback loop (Chapters 5 and 6).

In this thesis, the answer set solver clasp is used to extract learned knowl-
edge. Since clasp provides no native interface for this purpose, the solver
has to be instrumented to record all the conflict constraints learned during
conflict analysis. Furthermore, a modification of clasp’s resolution scheme



32 CHAPTER 3 KNOWLEDGE EXTRACTION

ground

solve

named-literals resolution

learned con�ict constraints might contain auxiliary literals

logic program nonground

ground logic program

contain named literals onlyintegrity constraints

Figure 3.1: To extract knowledge, the CDCL algorithm is modified (blue):
The customnamed-literals resolution scheme ensures that logged
conflict constraints only contain named literals. The learned con-
straints are output as integrity constraints in ASP’s modeling lan-
guage for further usage.

is necessary, as the default implementation might cause difficulties when
looking up the names of literals.

The required changes to the solver are highlighted in Figure 3.1. Themod-
ified clasp variant is referred to as the Feedback Clasp variant and capable
of recording learned knowledge thanks to the new resolution scheme and
appropriate configuration options. In contrast, the original implementation
with default configuration is called the Baseline Clasp variant.

STRUCTURE This chapter details the changes made to clasp. Section 3.1 ex-
plains how learned conflict constraints are recorded. Section 3.2 describes
the modified resolution scheme and its implementation. The chapter con-
cludes with a short overview of postprocessing steps (Section 3.3), which are
used in later parts of this thesis.



3.1 RECORDING LEARNED CONFLICT CONSTRAINTS 33

3.1 RECORDING LEARNED CONFLICT CONSTRAINTS

In the present thesis, learned conflict constraints are mainly recorded to en-
rich instances, that is, to add new rules to their answer set program. In ASP’s
modeling language, integrity constraint rules are a convenient way of repre-
senting conflict constraints—a nogood {v1,…, vm,u1,…,un} directly corre-
sponds to the following integrity constraint rule:

:- v_1, ..., v_m, not u_1, ..., not u_n.

To record conflict constraints in this format, clasp was extended to invoke
a custommethod every time a nogood is learned.Thismethod essentially re-
trieves the signs and names of all literals belonging to the conflict constraint.
Then, the method returns an according integrity constraint in ASP’s mod-
eling language. Signs are part of the literals’ data structure, while the literal
names (the names of the corresponding propositional variables) are stored
in clasp’s symbol table. Clasp internally manages the symbol table to map
external IDs to symbols (internal literals with respective names). A custom
method was added to the symbol table to look up the names of literals.

In this way, conflict constraints are recorded immediately when learned
by clasp.The output is directed to a pipe for other applications to read. With
this design, extracted knowledge need not be stored in a file temporarily.

3.2 THE NAMED-LITERALS RESOLUTION SCHEME

Even though this procedure records learned conflict constraints correctly,
looking up certain literal names might fail due to a complication in conjunc-
tion with clasp’s implementation. The reason for this is that clasp internally
introduces auxiliary literals on the one hand and implements the first-UIP
resolution scheme (see Section 2.2.3) on the other hand. Hence, conflict con-
straints learned during conflict analysis might comprise such auxiliary liter-
als. This is problematic because they cannot be associated with named lit-



34 CHAPTER 3 KNOWLEDGE EXTRACTION

Algorithm 3.1: The named-literals resolution scheme.

Input: A violated nogood ε, a program P, a set of conflict nogoods ∇, an
assignment A = (l1,…, ln), and the current decision level dl

Output: A derived conflict nogood δ and the backjump level k
1 δ ∶= ε
2 loop
3 f ∶= max{1 ≤ i ≤ n ∣ li ∈ δ } ▷ most recent assignment lf ∈ δ
4 if {l ∈ δ ∣ dlevel(l) = dl} ∖ {lf} = ∅ and name(lf) ≠ � then
5 break ▷ first named UIP lf found

6 δ ∶= (δ ∖ {lf}) ∪ (reason(lf) ∖ {lf}) ▷ resolution on level dl

7 while exists l ∈ δ with 1 ≤ dlevel(l) < dl and name(l) = � do
8 δ ∶= (δ ∖ {l}) ∪ (reason(l) ∖ {l}) ▷ resolution on levels < dl

9 k ∶= max{dlevel(l) ∣ l ∈ δ ∖ {lf}} ▷ backjump level k
10 return (δ, k)

erals in the original answer set program, thus rendering entire conflict con-
straints useless for the purposes of this thesis.

To overcome this issue, this section presents a new resolution scheme that
guarantees all logged conflict constraints to reference named literals only. In
contrast to first-UIP resolution, which stops resolution after finding the first
unique implication point, the named-literals resolution scheme additionally
resolves all the literals whose name look-up fails.

3.2.1 IMPLEMENTATION

Algorithm 3.1 shows an outline of the new scheme. Like clasp’s default im-
plementation (Algorithm 2.3), it accepts the violated nogood ε and clasp’s
current assignmentA as input and returns an asserting, derived conflict con-
straint δ as well as the backjump level k.



3.2 THE NAMED-LITERALS RESOLUTION SCHEME 35

First, the algorithmfinds the first namedUIP on the current decision level
dl (lines 2–6).This is similar to the search for the first UIP, except that a UIP
is also resolved if the look-up of the corresponding propositional variable
fails. After completing the loop, lf is the only remaining literal on dl and it
has an accessible name. Thus, lf is the first named UIP.

In the worst case, the search for the first named UIP proceeds until it
ends up with the decision literal ld of level dl. As mentioned earlier, decision
literals are UIPs. Additionally, ld is guaranteed to have an accessible name
thanks to configuration options explained in Section 3.2.3. This ensures that
the procedure always terminates successfully.

The second loop resolves unnamed literals on decision levels lower than
dl (lines 7–8). Resolution terminates if no unnamed literals remain.

In the end, the procedure has derived the nogood δ through resolution. As
with first-UIP resolution, the backjump level k is determined as the highest
decision level of a literal in δ except for the asserting literal (line 9).

3.2.2 EXAMPLE

Figure 3.2 shows an implication graph similar to the one in Figure 2.1. How-
ever, some of the literals (x1 to x4) are unnamed.

Table 3.1 contains the complete resolution sequence performed by the
named-literals resolution scheme. Starting with the violated nogood ε =
{d, r, s}, the named-literals resolution scheme first attempts to find the first
namedUIP (rows 1–6).The classical first-UIP schemewould stop resolution
after finding the first UIP x2 (row 5). However, x2 is an unnamed literal in
this example. Because of this, the named-literals resolution scheme contin-
ues by resolving x2 and obtains {d, b, x4, q} (row 6).The literal b is also a UIP
and—in contrast to x2—it has a name.

Having found the first named UIP b, the resolution scheme resolves all
unnamed literals on lower decision levels. In this case, this concerns only x4
(row 7).The final nogood derived by the named-literals scheme is {d, b, v, q}.



36 CHAPTER 3 KNOWLEDGE EXTRACTION

a
1

d
3

x4
2

z
5

x1
5

m
2

x2
5

g
5

a
5

e
5

q
1

r
5

decision literal

s
5

x3
5

b
5

v
2

Figure 3.2: A part of an implication graph under the conflict ε = {d, r, s}
(shown in red). Nodes stand for literals, while edges illustrate
the implication relationship. The lower part of a node l denotes
dlevel(l). The nodes x1 to x4 are unnamed literals.

resolved literal antecedent resulting nogood

ε {d, r, s}
1 s {a, s} {d, r, a}
2 r {a, x3, e, q, r} {d, a, x3, e, q}
3 a {x2, x4, a} {d, x2, x4, x3, e, q}
4 x3 {x2, x3} {d, x2, x4, e, q}
5 e {x2, e} {d, x2, x4, q}
6 x2 {b,d, x2} {d, b, x4, q}
7 x4 {v, x4} {d, b, v, q}

Table 3.1: Resolution sequence of the named-literals resolution scheme for
the conflict in Figure 3.2.



3.2 THE NAMED-LITERALS RESOLUTION SCHEME 37

3.2.3 CONFIGURATION OPTIONS

Throughout the entire thesis, the modified Feedback Clasp variant is in-
voked with the following command-line arguments:

clasp --log-learnts --resolution-scheme=named

--heuristic=Domain --dom-mod=1,16

--loops=no --reverse-arcs=0 --otfs=0

The former two configuration options are custom additions made to clasp:
The flag --log-learnts enables the conflict constraint logging procedure
detailed in the beginning of this chapter. --resolution-scheme switches
between the default (first-uip) and the modified scheme (named).

Then, the two domain-related configuration options ensure that recorded
conflict constraints never contain any unnamed literals.The rationale is that
given these settings, clasp favors selecting named atoms for decisions over
other, unnamed propositional variables such as auxiliaries and bodies. Deci-
sion literals are UIPs inherently (see Section 2.2.3). This guarantees that the
first namedUIP on decision level dl exists and is found by the named-literals
resolution scheme.What concerns lower decision levels, literals obtained by
the resolution scheme are always named—in theworst case, the implementa-
tion terminates resolution at decision literals, which are known to be named.

The above statements are based on the assumption that assignments con-
taining literals for all named atoms always lead to complete assignments.This
is not necessarily the case. For example, an answer set program might spec-
ify not to export any names by using the #hide command in gringo 3.Then,
clasp needs to make decisions on unnamed propositional variables, as there
are no named ones available. To avoid such issues, the programs used in this
thesis export all the names.

The latter three arguments disable multiple solver strategies that the cur-
rent implementation does not support.



38 CHAPTER 3 KNOWLEDGE EXTRACTION

3.2.4 IMPLEMENTATION CONSIDERATIONS

The named-literals resolution scheme searches for the first named UIP.This
behavior is the result of three considerations: First, a UIP must be found on
the decision level dl in order to obtain an asserting literal. This literal is, in
turn, necessary to ensure that unit propagation is possible after backjump-
ing (see Section 2.2.2). Second, as stated earlier, the UIP needs to be named.
Third, Zhang et al. empirically observed that first-UIP resolution leads to
lower solving times than other common resolution schemes [31].

For this reason, the named-literals resolution scheme aims at terminating
resolution on dl as early as possible, too. On the decision level dl, resolution
is stopped at the first named UIP, and on levels lower than dl, principally at
named literals. This approach (as depicted in Algorithm 3.1) is referred to
the First Named UIP design.

In an earlier iteration of the resolution scheme (referred to as the Deci-
sion design), the literals on decision level dl were resolved until the respec-
tive decision literal was obtained. This is also a valid implementation, since
the decision literal on dl is a UIP as well as a named UIP.

The effect of both designs on solving performance was briefly analyzed by
conducting the study in Chapter 4 once with each of the two implementa-
tions. For each call of the Feedback Clasp variant, the solving time ratio
between both implementationswas computed.The results show that on aver-
age1, the revised FirstNamedUIP design performed about 41% faster than
the earlierDecision implementation. Because of this, the FirstNamedUIP
implementation is used in all following analyses.

Table 3.2 shows the times required to solve the instances from Chapter 4
with named-literals resolution (as well as the number of conflicts) in com-
parison to first-UIP resolution. Visibly, the requirement of having conflict
constraints contain only named literals comes at the cost of reduced solving

1As this analysis deals with ratios of solving times, the geometric mean is used instead of
the arithmetic mean here. See Section 2.4 for more details on this topic.



3.2 THE NAMED-LITERALS RESOLUTION SCHEME 39

problem solving time conflicts

Ricochet Robots 120.22% 75.18%
Labyrinth 209.41% 40.30%

Hanoi Tower 214.27% 106.21%
Solitaire 814.23% 92.04%

Hamiltonian Cycle 368.93% 45.10%
Graph Coloring 400.52% 45.22%

Knight Cycle 0.15% 0.17%

Table 3.2: Performance of the named-literals resolution scheme, using Feed-
back Clasp and the options shown in Section 3.2.3 (except for
--log-learnts). Solving times and numbers of conflicts are rel-
ative to the ones measured with first-UIP resolution (Baseline
Clasp with default configuration).

performance.2 This could be due to the fact that the named-literals resolu-
tion scheme needs to resolve unnamed entries on decision levels below dl
(in contrast to first-UIP resolution). Furthermore, a name look-up for each
propositional variable is necessary, which leads to a less cache-efficient im-
plementation than the first UIP resolution scheme.

The named-literals resolution scheme was implemented in a forked ver-
sion of clasp 3.1.1. For the Baseline Clasp and Feedback Clasp variants,
two separate binaries were built, the former one stemming from clasp’s un-
changed code base and the latter one comprising the presented changeset.

The final implementation of the named-literals resolution schemewas val-
idated against clasp’s set of 370 acceptance tests. Additionally, it was verified
that adding the learned integrity constraints to the test instances did not
eliminate answer sets in any of the cases.

2The drastic decrease of solving times with Knight Cycle instances appears to be related
to the way the instances were generated. This is discussed in Section 4.4.



40 CHAPTER 3 KNOWLEDGE EXTRACTION

3.3 POSTPROCESSING

After having recorded the learned conflict constraints, different types of post-
processing can be performed on the output. One example is conflict con-
straint sorting, that is, ordering the logged conflict constraints by different
criteria in a second pass.This postprocessing step is important in Chapter 4,
which analyzes the effects of feeding back subsets of the learned conflict con-
straints to the solver. There, the order in which conflict constraints are se-
lected for feedback is varied (for instance, selecting n conflict constraints
with the lowest number of literals).

Another postprocessing step used throughout this thesis is subsumed con-
flict constraint removal. During conflict analysis, clasp often learns conflict
constraints that are subsets of previously learned ones (and thus more gen-
eral and stronger than those). Similar to how clasp operates when enabling
on-the-fly subsumption, conflict constraints may be removed from the out-
put if they are subsumed in this way.



4
DIRECT KNOWLEDGE

FEEDBACK

Theobjective of this thesis is to assess the potential benefits of reusing knowl-
edge learned by modern CDCL solvers while solving problem instances. Re-
using learned knowledge consists of enriching an instance with conflict con-
straints that the CDCL solver learned in a previous run (extracting the con-
flict constraints with the means described in Chapter 3). As this mechanism
involves a feedback step (highlighted in blue in Figure 4.1), it is also referred
to as knowledge feedback.

A sophisticated form of knowledge feedback strengthens learned knowl-
edge by generalization before the feedback step (see Chapters 5 and 6). But
before coming to that, this chapter investigates how CDCL solvers already
profit froma simple approach of knowledge feedback: appending the learned
conflict constraints to an instance directly—that is, in propositional form
and without any further processing.



42 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

+

select subset

enrich

ground

solve

named-literals resolution

learned con�ict constraints might contain auxiliary literals

logic program nonground

ground logic program

contain named literals onlyintegrity constraints

Figure 4.1: Direct knowledge feedback incorporates a feedback mechanism
(blue): When solving a logic program for the first time, learned
knowledge is extracted from the CDCL solver in the form of in-
tegrity constraints in ASP syntax. A subset of these integrity con-
straints is then used to enrich the program.

To this end, this thesis presents a study that covers randomly generated in-
stances of four typical planning problems and three graph problems. While
solving the instances, all learned conflict constraints are recorded. The in-
stances are then solved for a second time, this time enriching their original
programs with a subset of the logged conflict constraints. Then, the relation
between the solving times without and with knowledge feedback indicates
how knowledge feedback affects the solver’s performance.

In this study, a particular point of interest is the way in which conflict con-
straints are designated for feedback. Instead of always feeding back the con-
flict constraints in their entirety, only a subset of those may be selected for
feedback—for instance the conflict constraints recorded last or those con-
taining the least number of literals. To analyze the effect of such selection



4.1 ANALYZED PROBLEMS AND FACTORS 43

methods, the study tests various quantities of designated conflict constraints
as well as multiple selection orders.

As the results show, modern solvers indeed profit from reused learned
knowledge in many cases. Furthermore, certain selection orders appear to
be more beneficial than others.

STRUCTURE This chapter provides a detailed analysis of the impact of re-
using knowledge through direct feedback. After describing the examined
problems (Section 4.1) and the experimental design (Section 4.2), this chap-
ter lists the tested hypotheses (Section 4.3). Section 4.4 presents the results in
detail, broken down by problem. Finally, Section 4.5 concludes this chapter
with a discussion of the results.

4.1 ANALYZED PROBLEMS AND FACTORS

PROBLEMS This study covers seven problems: Ricochet Robots, Laby-
rinth, Hanoi Tower, Solitaire, Hamiltonian Cycle, Graph Color-
ing, and Knight Cycle (also known as knight tour with holes).

Except for the well-known Hamiltonian Cycle problem, they are all
part of the official problem suite of the 2013 ASP Competition.1 The former
four encodings are typical planning problems, as they incorporate time steps
and actions, while the remaining three problems are graph problems.

INSTANCES The benchmark set comprises 700 random, satisfiable instances
with baseline solving times of 3–10 seconds.

Creating the instances involvedmanually finding an appropriate base con-
figuration (for example, a suitable number of vertices and edge density in
Hamiltonian Cycle). For the four planning problems, a fixed maximum
plan length (horizon) was selected. Using the base configuration, a custom
script created random initial states and goal states (where applicable). Fi-

1Problem descriptions can be found on the official website of the 2013 ASP Competition,
https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite

https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite


44 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

nally, the script measured the solving time of each candidate with Baseline
Clasp, and rejected all the instances that took less than 3 or more than 10
seconds to solve.With Solitaire, nonsquare boards were also allowed to be
generated to obtain enough distinct instances.

METRIC A custom benchmark procedure measures the solving time of each
instance in two different runs with clasp: once with the original instance for
reference (the baseline solving time) and once after enriching the instance
through direct knowledge feedback. The ratio between both solving times
indicates whether enabling feedback was beneficial or not.

The measured solving times are always the times required to find the first
answer set, as reported by clasp. The benchmark procedure sets a solving
time limit of 600 seconds and uses a penalized average runtime (PAR-10) [17]
to handle timeouts. For reasons of comparability, all solving time measure-
ments are performed with Baseline Clasp, and Feedback Clasp is only
invoked to extract knowledge.

FACTORS Except for small instances, it is rarely sensible to feed all learned
conflict constraints back to the solver. For this reason, the feedback mecha-
nismmay select a specific subset of the recorded conflict constraints instead.
The feedback selection method specifies how this subset is obtained.

In addition to evaluating knowledge feedback in general, this study ana-
lyzes whether changing the feedback selection method has an effect on solv-
ing performance. In this study, feedback selection is controlled with two fac-
tors: the number of selected conflict constraints and the order of selection.

The number of selected conflict constraints varies from 8 to 16 384, with
a factor of

√
2 between two consecutive steps—altogether 23 possible num-

bers of conflict constraints. The order of selection is one of the following
six: First and Last select the n constraints that have been recorded first or
last, respectively. Shortest and Longest stand for the n constraints con-
taining the fewest or most literals. Lowest LBD and Highest LBD select n
constraints having the lowest or highest literals blocks distance (LBD) [1].



4.2 EXPERIMENTAL DESIGN 45

EXPERIMENTAL CONDITIONS In the baseline condition, the solving time of
an instance was recorded without any feedback, that is, with the original,
unmodified instance. The feedback conditions are all combinations of num-
bers of selected conflict constraints and selection orders. Hence, there are
23 × 6 = 138 different feedback conditions.

Per instance and experimental condition, a single set of measurements
was performed (no repetitions).

4.2 EXPERIMENTAL DESIGN

Given an instance I, the benchmark procedure first measures the reference
solving time of I with Baseline Clasp (the baseline condition).

After that, the procedure extracts all the learned conflict constraints (∇)
from solving the instance I. For this purpose, Feedback Clasp is called
with the command-line arguments shown at the end of Section 3.2. Feed-
back Clasp is stopped after finding the first answer set (because conflict
constraints learned after this point may exclude earlier answer sets) or after
a timeout of 600 seconds. In this case, the benchmark continues with the
already recorded conflict constraints only.

Next, the benchmark procedure repeats the following steps for each num-
ber of selected conflict constraints n and selection order o:

1. Sort ∇ according to o.

2. Select n (pairwise nonsubsuming) conflict constraints (∇f).

3. Extend I with ∇f (If).

4. Measure solving time of If with Baseline Clasp.

The first two items implement the respective feedback selection method,
making use of the postprocessing steps explained in Section 3.3. To make
the selection orders unambiguous, the conflict constraints in ∇ are sorted
chronologically if they rank equally with respect to the chosen sort key.



46 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

Sometimes, there are less than n conflict constraints available (especially,
after removing subsumed conflict constraints). In this event, the benchmark
tool uses only the available conflict constraints and proceeds unchangedly.

After selecting a subset ∇f of the conflict constraints ∇ for feedback, the
benchmark procedure appends them to I and measures the solving time of
the enriched problem instance If. The procedure then continues with the
next experimental condition.

Having completed all measurements, an evaluation procedure computes
the ratios of the measured solving times to the respective baseline measure-
ments. It then groups the results by problemand experimental condition and
aggregates the solving time ratios with the geometric mean (see Section 2.4).
Since the limit of detection is 0.001 seconds, measurements of 0.000 s are
replaced with 0.0005 s (half the precision) to avoid problems with the geo-
metric mean caused by multiplications with zero.

BENCHMARK ENVIRONMENT The benchmarks ran on a PC running Arch
Linuxwith an Intel Core i7-4790K (4.4GHz) and 16GBof RAM (1600MHz,
CL7 timings). Clasp 3.1.1 served as Baseline Clasp and as the foundation of
Feedback Clasp, both in conjunction with the grounder gringo 3.0.5. The
benchmark jobs used all CPUs exclusively (no parts of the benchmark ran
in parallel) to avoid memory and cache interferences.

4.3 HYPOTHESES

This study tests three hypotheses concerning the number of selected conflict
constraints, the nature of the problem, and the chosen selection order.

SOLVING TIME CURVE CDCL solvers benefit from enriching instances with
conflict constraints they learned in previous runs. However, solvers have to
consider the added conflict constraints during unit propagation. Because of
this, direct knowledge feedback gradually slows down the solving process
from a certain point on. Eventually, huge numbers of additional conflict



4.3 HYPOTHESES 47

baseline

number of selected constraints

so
lv

in
g 

ti
m

e

Figure 4.2: Hypothesized solving time curve: Providing a CDCL solver with
a certain number of learned conflict constraints helps it solve
instances faster (blue). However, the more the instances are en-
riched, the longer the solver’s unit propagation takes. At some
point, adding constraints will thus lead to higher solving times
than without feedback (gray).

constraints lead to higher solving times than the original instance requires.
Figure 4.2 sketches the expected curve.

PLANNING PROBLEMS VS. GRAPH PROBLEMS Planning problems benefit
more from reusing learned knowledge than graph problems. The reasoning
behind this assumption is that planning problems appear to havemore struc-
ture that can be exploited by the solver than abstract problems.Thus, learned
knowledge might be more useful in this case.

SELECTION ORDERS Last is more useful than First because conflict con-
straints recorded later potentially incorporate information contained in ear-
lier ones. Between Shortest and Longest, the former performs better, as
nogoodswith few literals require less decisions to becomeunit. LowestLBD
is more beneficial than Highest LBD, since high-LBD conflict constraints
are related to many decision levels, making it harder for them to become
unit. The latter two hypotheses stem from empirical results obtained by Au-
demard and Simon [1], the authors of the Glucose SAT solver.



48 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

4.4 RESULTS

For reasons of clarity, this section highlights and discusses only the most
interesting results. More results are shown in Appendix A.

The results show that in many experimental conditions, clasp benefits from
direct knowledge feedback. For each problem, Figure 4.3 shows the results
of the selection order that led to the lowest average solving time.Throughout
the entire benchmark, not a single timeout occurred.

In the cases of Ricochet Robots, Labyrinth, and (to a lower extent)
Hamiltonian Cycle, adding conflict constraints continuously reduced the
solving time, before it stagnated at some point. This effect can also be ob-
served with the selection orders not shown in Figure 4.3. In the best config-
urations, solving times were decreased by more than 50%.

With the right number of selected conflict constraints, Graph Coloring
instances were also solved faster thanks to direct knowledge feedback. How-
ever, enriching the instance with too many conflict constraints eventually
decreased the performance gain.

Solitaire and Hanoi Tower are the only two problems where direct
knowledge feedback did not have a pronounced effect on the solving time.

The drastic decrease of solving time with Knight Cycle (visible in all ex-
perimental conditions) is most likely not related to direct knowledge feed-
back. As Table 3.2 shows, exchanging the resolution scheme leads to a con-
siderable decrease of the number of conflicts with Knight Cycle. Thus, it
should be assumed that the generated instances are special cases, where al-
ready small modifications of the solver’s default search pattern lead to a so-
lution quickly. For this reason, the Knight Cycle instances are not further
detailed in the following results.

The issue concerning Knight Cycle reflects that answer set solvers are
scarcely robust in terms of solving times. While some solver configurations
might find a solution immediately, another search pattern might need to
traverse the entire rest of the search space before finding a solution.



4.4 RESULTS 49

baseline

number of selected conflict constraints

so
lv

in
g 

ti
m

e

16 64 256 1024 4096 16384

50 %

0 %

150 %

100 %

(a) Ricochet Robots, Shortest

(b) Labyrinth, Highest LBD (c) Graph Coloring, Shortest

(d) Hamiltonian Cycle, Last (e) Solitaire, Last

(f) Hanoi Tower, Shortest (g) Knight Cycle, Lowest LBD

Figure 4.3: The best selection order for each problem (containing the exper-
imental condition with the lowest average solving time). The x
axis denotes the number of selected conflict constraints and the y
axis shows the solving time relative to the baseline (gray bar).The
error bars are 95% confidence intervals. No timeouts occurred
during the entire benchmark.



50 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

Having showcased the best configurations for each problem, Sections 4.4.1
to 4.4.3 analyze whether the results reflect the hypotheses from Section 4.3.
After that, Section 4.4.4 explores alternative metrics. The results are eventu-
ally discussed in Section 4.5.

4.4.1 SOLVING TIME CURVE

In accordance with the hypothesized curve sketched in Figure 4.2, the mea-
sured solving time curves start decreasing at some point in almost all cases.
Exceptions are Solitaire and Hanoi Tower, which never appear to have
profited from direct knowledge feedback. With most of the other problems
and configurations, already small numbers of selected conflict constraints
had a positive effect on solving performance.

That is, however, not the casewithHamiltonianCycle and the Longest
or Highest LBD selection order. Here, the solving times first increase, then
gradually decrease, and eventually remain at about 35% of the baseline solv-
ing time. This opposes the assumption that small amounts of knowledge
feedback are either meaningless or slightly beneficial for the solver.

Furthermore, the results do not confirm the second part of the hypothesis,
that solving performance gets worse when selecting too many conflict con-
straints.OnlywithGraphColoring andHanoiTower, this effect is barely
observable, as the solving time curves rise toward the ending—at least, with
some of the selection orders. Hence, adding toomany conflict constraints to
the instance appears to be of no grave concern in practice up to magnitudes
of 10 000 selected conflict constraints.

Considering the diversity of the observed results, it is hardly possible to
predict the shape of a solving time curve accurately prior to investigating a
particular problem. It seems, however, reasonable to expect some improve-
ments with respect to the solving performance when reusing learned knowl-
edge through direct feedback.



4.4 RESULTS 51

4.4.2 PLANNING PROBLEMS VS. GRAPH PROBLEMS

While direct knowledge feedbackwas favorablewith RicochetRobots and
Labyrinth, it had no mentionable effect on the other two planning prob-
lems, Hanoi Tower and Solitaire. Hence, it is misleading to assume that
planning problems generally profit from reusing learned knowledge. Fur-
thermore, direct knowledge feedback was more beneficial with the graph
problems than hypothesized.

These observations invalidate the hypothesis that planning problems ben-
efit more from direct knowledge feedback than graph problems. The results
appear to strongly depend on the particular encoding and to be less related
to the character or category of a problem.

4.4.3 SELECTION ORDERS

FIRST VS. LAST In opposition to the hypothesis, the selection order First
led to better solving times than Last whenever there was a visible differ-
ence. This effect is noticeable with Hamiltonian Cycle and Labyrinth
(see Figure 4.4). In all other cases, both selection orders ranked equally.

SHORTEST VS. LONGEST When selecting conflict constraints in the Short-
est order, the resultswere often similar to those obtainedwith Last.Though,
in support of the hypothesis, the Shortest selection order led to huge im-
provements with certain problems.This concernsHamiltonianCycle and
Graph Coloring (see Figure 4.5).

Preferring the Shortest selection order, hence, appears to be sensible, as
it never had observable negative effects considering the remaining problems.

LOWEST LBD VS. HIGHEST LBD As hypothesized, Lowest LBD was gener-
ally more helpful than Highest LBD. Labyrinth and Graph Coloring
provide empirical evidence (see Figure 4.6) as well as Hamiltonian Cycle.
With the other problems, the two selection orders led to similar results.



52 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

(a) Hamiltonian Cycle, First (b) Hamiltonian Cycle, Last

(c) Labyrinth, First (d) Labyrinth, Last

Figure 4.4: With Hamiltonian Cycle and Labyrinth, the selection order
First performed better than Last.

(a) Hamiltonian Cycle, Shortest (b) Hamiltonian Cycle, Longest

(c) Graph Coloring, Shortest (d) Graph Coloring, Longest

Figure 4.5: Applying the Shortest selection order was more favorable than
Longest. This is particularly visible with Hamiltonian Cycle
and Graph Coloring.



4.4 RESULTS 53

(a) Labyrinth, Lowest LBD (b) Labyrinth, Highest LBD

(c) Graph Coloring, Lowest LBD (d) Graph Coloring, Highest LBD

Figure 4.6: With three problems, including Labyrinth and Graph Color-
ing, selecting conflict constraints by Lowest LBD helped more
than selecting by Highest LBD.

4.4.4 OTHER METRICS

Up to now, the analysis only covered solving times relative to a certain base-
line. When aggregating the measurements, this metric weighs all instances
equally, independent of their size or solving time. Hence, it provides a good
indication whether single instances benefit from direct knowledge feedback.

In practice, it might also be meaningful to consider the total solving time
required for an entire test series to complete. For this purpose, the evaluation
tool also plotted graphs based on total solving times. While maintaining the
essential traits of the solving time curves, the benefit of direct knowledge
feedback is less perceptible with this metric. In many cases, the total solving
time barely falls below the baseline reference. A possible explanation for this
observation is that harder instances—which have more impact on the total
runtime—profit less from reusing learned knowledge.

In addition to solving times, the numbers of encountered conflicts and de-
cisions were recorded. These alternative metrics were, however, highly cor-
related with the relative solving time and led to almost unchanged graphs.



54 CHAPTER 4 DIRECT KNOWLEDGE FEEDBACK

4.5 DISCUSSION

It should be noted that in most cases, recording the learned conflict con-
straints takes longer than actually solving an instance. This is due to the
lower performance of the named-literals resolution scheme, asmentioned in
Section 3.2.4. Additionally, the presented feedback mechanism solves each
instance twice—once to extract feedback and once with the extracted feed-
back. Hence, this preliminary study should be considered an assessment of
the theoretically possible benefits of direct knowledge feedback rather than
an attempt to improve solving performance in practice.

Aside from that, the results indicate that clasp often benefits from reusing
learned knowledge when enriching the instance appropriately. Even though
there were exceptions, direct knowledge feedback never impaired clasp’s
solving performance considerably.

Still, the analysis covered only seven different problems, and there might
be other, unexplored practical problems that lead to contrary results. Aside
from that, further selection methods could possibly yield better results with
problems such as Solitaire that did not profit from direct knowledge feed-
back in the experimental conditions tested so far.

Altogether, the results give good reason to investigate how to further profit
from reusing learned knowledge.



5
KNOWLEDGE

GENERALIZATION

The results of Chapter 4 indicate that CDCL solvers profit from reusing
learned knowledge directly and without further processing. Following that
line of thought, this chapter explores unassisted methods for generalizing
knowledge to make it more useful for solvers and to extend its applicability.
With these methods, an algorithm can be developed that extracts learned
conflict constraints and generalizes them given a problem instance. The ab-
stracted knowledge gained in the process continuously enriches the instance.
Such an algorithm, the knowledge feedback loop, is detailed in Chapter 6.

To generalize knowledge, this thesis pursues the two-step approach high-
lighted in Figure 5.1: The first step produces candidates (or hypotheses) for
generalized conflict constraints, deriving them from already learned knowl-
edge (after extracting it as in Chapter 3). But these candidate properties need
not necessarily remain true anymore and have to be checked for validity in



56 CHAPTER 5 KNOWLEDGE GENERALIZATION

validate

generate

proven

unproven
reject

ground

solve

named-literals resolution

learned con�ict constraints might contain auxiliary literals

logic program nonground

ground logic program

contain named literals onlyintegrity constraints

not necessarily valid
candidates for generalized

integrity constraints

generalized 
integrity constraints

Figure 5.1: Knowledge generalization consists of two steps (blue) in this the-
sis. Based on previously extracted knowledge, candidates for gen-
eralized conflict constraints are generated. A proof method then
validates the candidates and rejects all the invalid ones.



5.1 GENERATING CANDIDATES FOR GENERALIZED KNOWLEDGE 57

the second step. Candidates that cannot be proven valid are rejected.
One method for generating candidate properties is to replace constants

in learned conflict constraints with variables. This may mean extending the
validity of a conflict constraint from a specific object to all objects of the
same domain or from one time step to all points in time. Another possibility
isminimizing conflict constraints by eliminating as many literals as possible,
while ensuring that the conflict constraints stay valid.

Two proof methods for validating the derived hypotheses are presented
in this chapter. Both methods build on the concept of searching the space of
an instance’s solutions for counterexamples to a hypothesis. The first proof
method employs of a proof by induction, and the second one is a simplifica-
tion thereof. However, both methods require knowledge about the meaning
of specific predicates in the encoding. For this reason, the discussed imple-
mentations only accept ASP facts obtained from encodings in PDDL with
the help of plasp (see Section 2.3 for explanations on PDDL and plasp).

STRUCTURE This chapter examines how learned knowledge can be general-
izedwithout human support. First, Section 5.1 explains differentways of find-
ing candidates for generalized conflict constraints, taking as a basis learned
knowledge extracted from the answer set solver. Then, Section 5.2 explains
the basic search for counterexamples and presents two proof methods for
testing the candidate properties.

5.1 GENERATING CANDIDATES FOR GENERALIZED KNOWLEDGE

This section explores two ways to generate candidates for generalized con-
flict constraints from extracted learned knowledge: replacing constants with
variables (Section 5.1.1) and minimizing conflict constraints through literal
elimination (Section 5.1.2).



58 CHAPTER 5 KNOWLEDGE GENERALIZATION

5.1.1 REPLACING CONSTANTS WITH VARIABLES

Conflict constraints learned by answer set solvers are ground (variable-free).
One method for deriving candidate properties is to replace constants in the
conflict constraints with variables covering the entire respective domains.

For instance, consider the following (ground) conflict constraint that the
solver might have learned with a Ricochet Robots instance:

:- not go(red, up, 3), go(red, up, 4), not go(red, left, 5).

While this conflict constraint is specific to a particular robot (red), it might
also be valid for all the other available robots:

:- robot(R),
not go(R, up, 3), go(R, up, 4), not go(R, left, 5).

This is a candidate for a generalized conflict constraint and does not neces-
sarily hold anymore. Whether it is still valid needs to be checked separately
(Section 5.2 explains suitable methods). Another candidate may be obtained
by extending the validity of a direction constant to any possible direction:

:- direction(D),
not go(red, D, 3), go(red, up, 4), not go(red, left, 5).

These two examples extend the scope of constraints to the entire domains
of objects. Clearly, there are many other possibilities of generating candidate
properties in a similar fashion.

Aside from objects, many encodings such as Ricochet Robots specify
a time domain to express the chronology of actions. In the above case, the
third parameter of the go predicate determines the time step at which the
robot moves. Hypothetically, the conflict constraint might be valid for any
sequence of points in time:

:- time(T), time(T + 1), time(T + 2),
not go(red, up, T), go(red, up, T + 1),
not go(red, left, T + 2).



5.1 GENERATING CANDIDATES FOR GENERALIZED KNOWLEDGE 59

The time domain is very convenient when it comes to checking candidate
properties, since it enables a validation method employing a proof by induc-
tion (Section 5.2.2). For this reason, the present thesis focuses on generaliz-
ing conflict constraints over the time domain rather than object domains.

5.1.2 MINIMIZING CONFLICT CONSTRAINTS

A second method for making knowledge more general attempts to find a
minimum subset of a learned conflict constraint that is still valid. With in-
tegrity constraints, this means eliminating as many literals as possible. The
motivation for minimizing conflict constraints stems from the observation
that in manual experiments, many of the literals (often all but two or three)
could be eliminated without making the conflict constraints invalid.

Taking again the learned conflict constraint from the last section,

:- not go(red, up, 3), go(red, up, 4), not go(red, left, 5).

a thinkable candidate is that the conflict constraint still holds after eliminat-
ing, for example, the last literal:

:- not go(red, up, 3), go(red, up, 4).

Assuming that some validation method found this minimized conflict con-
straint to be still valid, a further candidate property would be:

:- not go(red, up, 3).

A minimization procedure can perform this task automatically by elim-
inating literal by literal. Whenever the conflict constraint becomes invalid,
the procedure reverts the last elimination and continues with the next literal.
Theminimization procedure used in this thesis always proceeds from left to
right. However, when using another strategy, the procedure might find a dif-
ferent minimum, since the minimum subset is not necessarily unique [24].



60 CHAPTER 5 KNOWLEDGE GENERALIZATION

5.2 VALIDATING CANDIDATE PROPERTIES

Having generated candidates for generalized conflict constraints, these need
to be checked for validity before they can be used to enrich instances. This
section presents two proof methods that are able to validate candidate prop-
erties through automated proofs. The two methods employ a simple search
for counterexamples, which is detailed in Section 5.2.1. Based on that, Sec-
tion 5.2.2 shows a proof method that involves a proof by induction. Then,
Section 5.2.3 describes a simplification of this method that reduces the in-
duction to a modified version of the proof by counterexample. Finally, Sec-
tion 5.2.4 discusses the benefits and limitations of the two proof methods.

5.2.1 SEARCH FOR COUNTEREXAMPLES

In order to validate candidate properties, proof methods need to recognize
whether the properties are invariant for all the stablemodels of a problem in-
stance. Instances should only be enriched with invariants, since actual stable
models might be eliminated otherwise.

To prove a property to be invariant, a classic indirect technique is to prove
that there are no counterexamples. A counterexample is a stable model that
violates the property. If there are provably no counterexamples, the property
must be an invariant of the tested instance.

The process of searching for counterexamples can be automated with the
help of an ASP solver. The essential idea is to add the negation of the hy-
pothesized property to the answer set program of the instance. This change
eliminates all the stable models that satisfy the hypothesis. The remaining
solutions of this proof returned by the solver are only the stable models that
violate the hypothesis—that is, all the counterexamples.

Hence, checking the validity of candidate properties boils down to solv-
ing a slightly extended version of an instance’s answer set program. A candi-
date property is valid if the solver does not find any stable models (counter-



5.2 VALIDATING CANDIDATE PROPERTIES 61

Listing 5.1: ASP problem encoding of Graph Coloring.

1 color(red; green; blue).
2

3 % Choose exactly one color per vertex
4 1 {chosenColor(V, C) : color(C)} 1 :- vertex(V).
5

6 % Make graph undirected
7 edge(V2, V1) :- edge(V1, V2).
8

9 % Adjacent edges must not have the same color
10 :- edge(V1, V2), chosenColor(V1, C), chosenColor(V2, C).

Listing 5.2: Problem instance of Graph Coloring.

1 vertex(1..5).
2

3 edge(1, 2). edge(1, 3). edge(1, 5).
4 edge(2, 3). edge(2, 4). edge(2, 5).
5 edge(3, 4). edge(4, 5). 1

5 3

4

2

examples). Search can be terminated directly after finding the first stable
model, in which case the hypothesis is invalid. However, to prove that there
are no counterexamples, the solver must have searched the whole search
space to not miss any stable models.

EXAMPLE To illustrate the procedure, consider the encoding of GraphCol-
oring in Listing 5.1 and the example instance in Listing 5.2. Solving this in-
stance with clasp yields six stable models.

An invariant of Graph Coloring is: »From three pairwise connected
vertices, one is red, one green, and one blue.« To test this property, it is first
translated to ASP syntax (lines 1–7 in Listing 5.3). Then, an integrity con-
straint is added that forms the negation of the tested hypothesis (line 10). In
this way, the solver only returns counterexamples violating the hypothesis.



62 CHAPTER 5 KNOWLEDGE GENERALIZATION

Listing 5.3: Rules added to Listing 5.1 to test the hypothesis: »From three pair-
wise connected vertices, one is red, one green, and one blue.«

1 % Auxiliary predicate
2 colorMissing :- edge(V1, V2), edge(V2, V3), edge(V3, V1),
3 color(C), not chosenColor(V1, C),
4 not chosenColor(V2, C),
5 not chosenColor(V3, C).
6

7 % Hypothesis
8 hypothesis :- not colorMissing.
9

10 % Find counterexamples only
11 :- hypothesis.

When solving the instance together with the program in Listing 5.3, there
are no stable models anymore—thus, the property is indeed invariant (at
least with respect to this instance).

As a negative example, consider the inverse hypothesis: »Each subgraph
with exactly one red, one green, and one blue vertex is complete.« Apply-
ing the same procedure as above results in the rules depicted in Listing 5.4.
Solving the original answer set program with this extension yields six coun-
terexamples. Consequently, it is not an invariant and rejected.

LIMITATIONS The search for counterexamples is universal in that it can test
candidate properties without specific knowledge about the problem. How-
ever, it has two major limitations.

First, its results are instance-specific. If the hypothesis from Listing 5.4
was tested against the instance shown in Listing 5.5, the proofmethod would
not find any counterexamples.The property would, hence, be considered an
invariant with respect to this instance (which is correct, in fact), even though
it is rejected with the instance from Listing 5.2.

Second, to prove invariants to be indeed invariant, the solver needs to



5.2 VALIDATING CANDIDATE PROPERTIES 63

Listing 5.4: Rules added to Listing 5.1 to test the hypothesis: »Subgraphs with
exactly one red, one green, and one blue vertex are complete.«

1 % Auxiliary predicates
2 rgb(V1, V2, V3) :- chosenColor(V1, red),
3 chosenColor(V2, green),
4 chosenColor(V3, blue).
5

6 rgbUnconnected :- rgb(V1, V2, V3), not edge(V1, V2).
7 rgbUnconnected :- rgb(V1, V2, V3), not edge(V2, V3).
8 rgbUnconnected :- rgb(V1, V2, V3), not edge(V3, V1).
9

10 % Hypothesis
11 hypothesis :- not rgbUnconnected.
12

13 % Find counterexamples only
14 :- hypothesis.

Listing 5.5: Another problem instance of Graph Coloring.

1 vertex(1..3).
2

3 edge(1, 2). edge(1, 3). edge(2, 3). 1 2

3

search the entire space of possible stable models of the problem instance (to
be certain that there are no counterexamples at all). With big instances, this
is impracticable—especially when checking many candidate properties.

Since in general, planning problems are exponential in the number of flu-
ents, search might also become infeasible. Additionally, plans must be lim-
ited to a specific maximum length (the horizon) when solving with solvers
like clasp. Thus, the results are not universal anymore and the proof can be-
come very time-consuming when testing with high maximum plan lengths.



64 CHAPTER 5 KNOWLEDGE GENERALIZATION

5.2.2 PROOF BY INDUCTION

Schiffel and Thielscher presented another automated proof method that in-
volves answer set programming [28]. Their approach is tailored to the game
description language (GDL) [20] and proves game-specific properties related
to single game states through a proof by induction. For instance, such a prop-
erty related to chess is: »There is at most one pawn in each cell.«

This kind of induction is performed over the temporal domain.Therefore,
the method is restricted to proving whether properties hold across all time
steps. The proof by induction consists of the two typical steps: First, prove
that the hypothesis holds for the game’s initial state (induction base). Then,
test that whenever the hypothesis holds for an arbitrary state, it also holds
for any subsequent state (induction step). If both the induction base and step
are proven, the property is an invariant of the game instance.

To test the induction base, the proof method translates the game rules to
ASP’s modeling language and establishes the instance’s initial state. Then, it
uses an answer set solver to find counterexamples, analogous to the method
described in Section 5.2.1.

For the induction step, the proof method works slightly differently:

1. Nondeterministically build an initial state (instead of the instance’s
actual initial state). This concept is called a state generator.

2. Nondeterministically apply an action, producing a successor state.

3. Reject solutions if the initial state does not satisfy the hypothesis.

4. Reject solutions if the successor state satisfies the hypothesis.

What remains are all counterexamples to the induction step—answer sets
in which the hypothesis is fulfilled for a certain state, but no more after ap-
plying a particular action. Again, if the solver finds no counterexamples, the
induction step is eventually proven.



5.2 VALIDATING CANDIDATE PROPERTIES 65

In their follow-up work, Thielscher et al. extended the proof to invari-
ants referencing sequences of states [30, 15], for example: »If the black player
moves a pawn this turn, then the white player moves a pawn next turn.«
Supporting this additional type of invariants requires only a small change:
Instead of choosing one successor state, a sequence of successor states is gen-
erated that spans as many states as the hypothesis references. Then, the in-
duction base and step are performed as before.

With some adaptations, the extended proof method is capable of vali-
dating conflict constraints obtained from generalization over the time do-
main, as explained in Section 5.1.1. Despite this ability, the method has a
drawback—to implement the generators for the induction step, the proof
method needs to know which predicates denote mutable state properties
(fluents) and actions. ASP’s modeling language does not provide such infor-
mation in general, in contrast to the GDL and also PDDL. For this reason,
the proof method byThielscher et al. cannot be simply applied to pure spec-
ifications in the modeling language of ASP.

Nonetheless, restricting the input to GDL or PDDL specifications and
generalizing candidate properties over the temporal domain allow for im-
plementing the generalized knowledge feedback loop. In the following, this
section shows in detail how these properties are proven by induction.

The proof by induction is translated to ASP facts obtained from PDDL
specifications with plasp (see Section 2.3.2). In this way, not just games can
be adressed but planning problems in general.

BASIC DEFINITIONS AND RULES Suppose that the proof method needs to
test the following candidate property:

:- time(T), time(T + 1), time(T + 2),
not holds(f1, T), apply(a, T + 1), holds(f2, T + 2).

As with the simple search for counterexamples, it does this by constructing
special programs (one for the induction base and one for the induction step)
and feeding them to a CDCL solver, together with the problem instance.



66 CHAPTER 5 KNOWLEDGE GENERALIZATION

Before the actual proof, both parts of the induction introduce the constant
degree and the predicate hypothesisConstraint as follows:

#const degree=2.
hypothesisConstraint(T) :-

time(T), time(T + 1), time(T + 2),
not holds(f1, T), apply(a, T + 1), holds(f2, T + 2).

The degree is the range of time points spanned by the hypothesis (2 in the
case of the example conflict constraint). With the predicate hypothesis-
Constraint, the answer set programs can easily check whether the hypoth-
esis is satisfied for a state at a specific time step.

Apart from these definitions, the proofs for the induction base and step
both need to respect the planning problem’s rules. For this reason, they add
another partial answer set program, shown in Listing 5.6. This program—
essentially a part of the meta encoding in Listing 2.7—lets the solver choose
actions, check their preconditions, and apply their effects. Along with a def-
inition of an initial state, the meta encoding would generate all legal action
sequences (up to a certain length) and the resulting states.

INDUCTION BASE Listing 5.7 contains the core of the induction base proof—
establishing the initial state at time step 0 (line 2) and rejecting solutions if
the candidate property is satisfied when applied to time step 0 (line 5).

By concatenating the three parts of the answer set program (the defini-
tions, the meta encoding, and the code specific to the induction base), the
proof method tests the induction base by searching for counterexamples. If
the solver finds no solutions, the induction base is proven and the proof
method proceeds with the induction step. Otherwise, the hypothesis could
not be proven and is rejected.

INDUCTION STEP Asmentioned earlier, a state generator is used to produce
arbitrary initial stateswithin the induction step.This is realized by Listing 5.8,
which nondeterministically chooses the fluents that shall hold in the initial
state (line 5). The induction step proof rejects solutions in two cases—if the



5.2 VALIDATING CANDIDATE PROPERTIES 67

Listing 5.6: Meta-encoding part of the induction proof, shared by the induc-
tion base and the induction step.

1 % Degree of the hypothesis
2 time(0..degree).
3

4 % Perform actions
5 1 {apply(A, T) : action(A)} 1 :- time(T), T > 0.
6

7 % Check preconditions
8 :- apply(A, T), demands(A, F, true), not holds(F, T - 1),
9 time(T), time(T - 1).
10 :- apply(A, T), demands(A, F, false), holds(F, T - 1),
11 time(T), time(T - 1).
12

13 % Apply effects
14 holds(F, T) :- apply(A, T), adds(A, F), action(A), time(T).
15 del(F, T) :- apply(A, T), deletes(A, F), action(A), time(T).
16 holds(F, T) :- holds(F, T - 1), not del(F, T),
17 time(T), time(T - 1).

Listing 5.7: Part of the answer set program to prove the induction base.

1 % Establish the initial state
2 holds(F, 0) :- init(F).
3

4 % Reject if the initial state satisfies the hypothesis
5 :- not hypothesisConstraint(0).



68 CHAPTER 5 KNOWLEDGE GENERALIZATION

Listing 5.8: Part of the answer set program to prove the induction step.

1 % Base case has <degree> steps, induction step needs one more
2 time(degree + 1).
3

4 % Generate a state nondeterministically
5 {holds(F, 0)} :- fluent(F).
6

7 % Reject if the initial state does not satisfy the hypothesis
8 :- hypothesisConstraint(0).
9

10 % Reject if the successor state satisfies the hypothesis
11 :- not hypothesisConstraint(1).

initial state (time step 0) does not satisfy the hypothesis (line 8) or if the
successor state (time step 1) satisfies the hypothesis (line 11).

To apply the candidate property to the successor step, it is shifted by 1with
hypothesisConstraint(1). For this to work, the induction step requires
one more time step than the induction base (see line 2).

The proof method performs the induction step by feeding the combined
answer set program (definitions, meta encoding, and induction step pro-
gram) to the solver, again to search for counterexamples. If both the induc-
tion base and step lead to no stable models, the candidate property is suc-
cessfully proven by induction. The property can therefore be used to enrich
the problem instance in the form of an integrity constraint in ASP syntax.

OPTIMIZATION Up to now, the state generator always considers all the flu-
ents defined by the problem specification to construct initial states. As an
optimization, the fluents used to generate states can be chosen from a subset
instead, the fluent closure (see Listing 5.9). The output of this positive-logic
program is a superset of all fluents reachable from the initial state.

To use the fluent closure, line 5 in Listing 5.8 is replaced by:

{holds(F, 0)} :- fluentClosure(F).



5.2 VALIDATING CANDIDATE PROPERTIES 69

Listing 5.9: Encoding of the fluent closure, a positive-logic encoding build-
ing a subset of all states reachable from the initial state.

1 % Iteratively build the fluent closure using forward chaining
2 fluentClosure(F) :- init(F).
3 fluentClosure(F1) :- action(A), adds(A, F1),
4 fluentClosure(F2) : demands(A, F2, true).

Listing 5.10: Part of the answer set program used with a simplification of the
proof by induction.

1 % Generate a state nondeterministically
2 {holds(F, 0)} :- fluent(F).
3

4 % Reject if the initial state satisfies the hypothesis
5 :- not hypothesisConstraint(0).

5.2.3 SIMPLIFIED PROOF METHOD

The present thesis introduces a simplification of the proof by induction that
still takes benefit of the state-generator mechanism. However, this proof
method replaces the two induction steps with a single search for counterex-
amples, similar to the one explained in Section 5.2.1.

Listing 5.10 shows the essential part of the simplified proof method. As
with the proof by induction, a nondeterministic initial state is generated
(line 2). But instead of performing the induction, stable models of this pro-
gram are eliminated if the generated initial state supports the hypothesis
(line 5). In this way, counterexamples to the hypothesis are found directly,
without the need of a second step.

The simplified proofmethod reuses themeta-encoding part shown in List-
ing 5.6 and the definitions for hypothesisConstraint and degree from
Section 5.2.2. Additionally, the optimization of using the fluent closure is
compatible with this proof method.



70 CHAPTER 5 KNOWLEDGE GENERALIZATION

Listing 5.11: Manually crafted properties for BlocksWorld.With the proof
by induction, none of these properties could be proven alone.
However, the conjunction of all candidates is provable.

1 :- holds(holding(X), T), holds(ontable(X), T).
2 :- holds(holding(X), T), holds(on(Y, X), T).
3 :- holds(holding(X), T), holds(clear(X), T).
4 :- holds(holding(X), T), holds(on(X, Y), T).
5 :- holds(ontable(X), T), holds(on(X, Y), T).
6 :- time(T), typedobject(block(X)),
7 2 {holds(on(X, Y), T) : typedobject(block(Y))}.
8 :- holds(clear(X), T), holds(on(Y, X), T).
9 :- holds(holding(X), T), holds(handempty, T).
10 :- time(T), 2 {holds(holding(X), T) : typedobject(block(X))}.
11 :- time(T), typedobject(block(X)),
12 2 {holds(on(Y, X), T) : typedobject(block(Y))}.

5.2.4 DISCUSSION

As mentioned before, the implementations of both proof methods require
problem specifications to be written in PDDL (and then translated to ASP
facts). Another disadvantage of the proof methods is that they are weaker
than the complete search for counterexamples from Section 5.2.1. The issue
originates from the nondeterministic state generator, which produces many
unreachable and even invalid states. Due to this, the proofmethodsmaymis-
takenly find counterexamples and then reject potentially valid hypotheses.

In a preliminary study, candidate properties for the BlocksWorld prob-
lem were crafted manually (see Listing 5.11). Because of invalid states gener-
ated by the proof by induction, none of the candidate properties could be
proven individually. Despite of this observation, the conjunction of all ten
candidate properties is provable with the proof by induction. In fact, com-
bining only nine of the shown properties always leads to (false) counterex-
amples. For instance, when testing all properties but the one in line 10 simul-



5.2 VALIDATING CANDIDATE PROPERTIES 71

taneously, clasp returns the following counterexample:

holds(holding(c), 0) holds(holding(d), 0)
apply(putdown(c), 1) holds(handempty, 1)
holds(ontable(c), 1) holds(clear(c), 1)
holds(holding(d), 1)

This is obviously no actual counterexample because two different blocksmay
never be held in the hand at the same time in Blocks World (and apart
from that, there are multiple other issues).

To overcome this problem, the problem specification could be extended
by constraints (such as the ones in Listing 5.11) ensuring that only valid states
are generated. PDDL provides no such means, however.

Aside from these restrictions, the two proof methods reduce the valida-
tion of candidate properties to comparably inexpensive proofs (for the in-
duction base and step, or the single simplified proof). The reason for this
lies in line 2 of Listing 5.6—the search space is limited by the degree of the
hypothesis because states after that do not affect the proof result.

In practice, this is often more feasible than performing the pure search
for counterexample. Additionally, the two proof methods are independent
of a planning horizon, as the number of simulated time steps depends on the
degree of a candidate property. Importantly, the induction method can be
applied to almost all candidate properties that stem from extracted learned
conflict constraints by generalization over the temporal domain.1 These fea-
tures render the proof by induction and the simplification suitable for auto-
mated knowledge generalization.

However, the proof by induction validates properties against a specific
problem instance (because the induction base depends on an initial state).
Therefore, knowledge proven by induction with respect to one instance can-
not be transferred to another instance of the same problem.

1Exceptions are hypotheses with plasp’s terminal(T) predicate, which cannot be simply
generalized over the time domain (because the proof methods do not define a goal).



72 CHAPTER 5 KNOWLEDGE GENERALIZATION

In contrast, when the fluent-closure optimization is disabled, the simpli-
fied proofmethod becomes independent of specific problem instances.Then,
candidate properties are only proven against the problem encoding along
with the domain predicates. Hence, knowledge generalized like this is valid
for other instances that have a different initial state or goal situation (but
share the same encoding and domain).

Additionally, the simplified proof consists of a single step only. Thanks to
this, testing a candidate property is less complex and may require less solver
time. Despite the simplification, this proofmethod is still able to validate the
same types of candidate properties as the proof by induction.

On the downside, the simplification might lead to a weaker proof, since
hypotheses are tested only against a single state sequence andnot two consec-
utive ones. For example, the simplified proof method is not able to prove the
ten properties in Listing 5.11 simultaneously. For this reason, Chapter 6 con-
siders two configurations of the knowledge feedback loop—one employing
the inductive proof method and one using the discussed simplification. In
the evaluation of the knowledge feedback loop (Section 6.2), the two proof
methods are compared empirically.



6
GENERALIZED

KNOWLEDGE FEEDBACK

This chapter introduces the generalized knowledge feedback loop (abbrevi-
ated as the feedback loop), an algorithm that autonomously gathers and gen-
eralizes learned knowledge.The feedback loop takes the classic learning tech-
nique of modern CDCL solvers one step further. Instead of using learned
knowledge directly (as in Chapter 4), learned knowledge is strengthened by
generalization in an additional step (with the methods from Chapter 5).

Figure 6.1 shows an outline of the feedback loop’s workings.The algorithm
accepts a problem instance as input, along with its problem encoding.These
need to be provided in the form of ASP facts stemming from a PDDL speci-
fication by translation with plasp (see Section 5.2.2). With just this input, the
procedure begins to extract learned knowledge by solving the problem with
a modified solver (as explained in Chapter 3). Then, the algorithm repeats
the following steps continuously:



74 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

+

validate

not necessarily valid
candidates for generalized

integrity constraints

generate

generalized 
integrity constraints

proven

unproven
reject

ground logic program

contain named literals only

ground

solve

integrity constraints

named-literals resolution

learned con�ict constraints might contain auxiliary literals

logic program nonground

enrich

Figure 6.1: The generalized knowledge feedback loop combines all the tech-
niques presented in this thesis: Autonomously and iteratively, it
extracts knowledge from the solver, generalizes it, and feeds the
generalized knowledge back to the solver.



75

1. Generate a candidate property by generalizing a learned conflict con-
straint (Section 5.1).

2. Validate the candidate property with a proof method (Section 5.2).

3. If the property holds, output the generalized conflict constraint and
add it to the instance.

An important aspect of this procedure is that the instance is continuously
enriched with the proven generalized conflict constraints. In this way, they
strengthen the algorithm’s ability to prove future candidate properties.

Many details of the feedback loop can be implemented in multiple ways.
For instance, candidate propertiesmay be validatedwith various proofmeth-
ods and additional techniques such as minimization (Section 5.1.2) may or
may not be applied. However, when deciding on such aspects of the feedback
loop, there are currently no experience values to rely upon.

For this reason, this chapter presents a pilot study that evaluates several
configurations of the feedback loop. In the study, a certain number of conflict
constraints are generalized first. Then, the constraints are fed back to the
solver through generalized knowledge feedback. This feedback mechanism
corresponds to the one in Chapter 4—instances are solved once without and
once with feedback to measure whether generalized knowledge feedback is
advantageous for the solver’s performance.

The results indicate that many candidate properties can be validated au-
tonomously and that answer set solvers profit from generalized knowledge
feedback. While the two tested proof methods produce similar results, only
minimization leads to considerable benefits on the solving performance.

In a particularly interesting configuration, candidate properties are vali-
dated with the simplified proof but without the fluent-closure optimization.
As mentioned in Section 5.2.4, this makes the proof instance-independent.
Hence, knowledge learned and generalized in this way can be safely trans-
ferred to other instances of the same problem encoding and domain. This



76 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

might be the most valuable outcome of the present thesis because it enables
applications where knowledge is learned and generalized in an offline pro-
cedure and reused to solve future instances.

STRUCTURE This chapter presents an implementation of the generalized
knowledge feedback loop and is divided in three parts. Section 6.1 describes
the design of the feedback loop and possible configurations. Section 6.2 eval-
uates the implementation. In the study, two proof methods are compared
and the effects of minimization and the fluent-closure optimization are an-
alyzed. The chapter concludes by investigating possible applications of the
feedback loop in Section 6.3.

6.1 DESIGN AND IMPLEMENTATION

This section first explains the implementation of a simple version of the feed-
back loop (Section 6.1.1). After that, Section 6.1.2 discusses more details, al-
ternatives to certain aspects, and configuration options of the feedback loop.

6.1.1 BASIC IMPLEMENTATION

Given a problem instance and its encoding in plasp-formatted ASP facts, the
feedback loop begins by extracting learned knowledge from that instance.
For this purpose, it invokes the modified solver presented in Chapter 3 with
the instance facts and plasp’s meta encoding (Listing 2.7).The feedback loop
always extracts a fixed but configurable number of conflict constraints. If
the solver terminates earlier, the feedback loop continues with the conflict
constraints obtained up to that point.

The learned conflict constraints are then generalized over the time do-
main, resulting in candidate properties. These are internally represented by
normalizing the time steps, that is, shifting the time points such that the
lowest referenced time step becomes 0.

Next, the candidate properties are sorted by degree (in ascending order).



6.1 DESIGN AND IMPLEMENTATION 77

This is sensible because the higher a candidate’s degree is, the bigger the
space searched by the proofmethod becomes. Candidates of the same degree
are sorted by their number of literals, since minimizing conflict constraints
with many literals requires many tests.

The candidates are then iteratively validated with the proof by induction
(Section 5.2.2) or the simplified proof (Section 5.2.3). Proven candidates are
immediately added to the instance to potentially strengthen future proofs.

Optionally, proven candidates may be minimized (as explained in Sec-
tion 5.1.2). In this case, literals are removed iteratively from left to right. After
eliminating each literal, the shortened candidate property is validated again,
using the same proof method as above. If the candidate becomes invalid by
removing a literal, the change is undone and the next literal is tested. After
testing all literals, the minimized conflict constraint is added to the instance
instead of the original one.

The feedback loop terminates after successfully proving a user-defined
number of conflict constraints, which are finally returned.

6.1.2 IMPLEMENTATION DETAILS

CONFIGURATION OPTIONS Certain details of the feedback loop may be
implemented in multiple ways or require specific constants to be defined.
To that end, the present implementation provides several configuration op-
tions, which are listed in Table 6.1.

One of themost relevant options is the choice of the proofmethod used to
validate candidate properties (--proof-method). The implementation fea-
tures the proof by induction and the simplification introduced in this thesis.
Another important option is whether or not tominimize conflict constraints
after successfully proving them (--minimization-strategy).

Two already mentioned constants are the number of conflict constraints
to extract (--constraints-to-extract) and after howmany successfully
generalized properties the procedure should terminate (--constraints-



78 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

configuration option effect

--proof-method=p use proof by induction (p = InductionProof)
or simplified proof (p = SimpleProof)

--minimization-strategy=m disable minimization (m = NoMinimization) or
enable it (m = LinearMinimization)

--fluent-closure-usage=f enable fluent closure (f = UseFluentClosure)
or disable it (f = NoFluentClosure)

--testing-policy=t restart extraction after testing all hypotheses
(t = TestAll) or after successful proof
(t = FindFirst)

--constraints-to-extract=n1 extract n1 ∈ℕ conflict constraints initially

--constraints-to-prove=n2 stop after proving n2 ∈ℕ properties

--max-degree=n3 skip hypotheses if degree greater than n3 ∈ℕ

--max-number-of-literals=n4 skip hypotheses with more than n4 ∈ℕ literals

--extraction-timeout=n5 set grounding time limit of knowledge extraction
to n5 ∈ℕ seconds

--hypothesis-testing-

timeout=n6

set grounding/solving time limit to n6 ∈ℕ
seconds when proving properties

--horizon=n7 apply a fixed maximum plan length of n7 ∈ℕ in
knowledge extraction

Table 6.1: Configuration options of the presented feedback loop implementation.



6.1 DESIGN AND IMPLEMENTATION 79

to-prove). The other configuration options are explained below, where
more details about the implementation are provided.

KNOWLEDGE EXTRACTION To extract knowledge, a planning horizonmust
be specified (--horizon). This is required by plasp’s meta encoding, which
requires an upper bound of the plan length.

After extracting the specified number of conflict constraints, the solver
is paused through a POSIX signal (if it did not terminate already). If not
enough properties could be proven given the extracted conflict constraints,
the solver is restarted to produce more conflict constraints. In the rare case
that no proof could be successfully performed, restarting would not help
(because the instance is untouched), and the solver is resumed instead.

Should restarting the solver with the enriched program produce no more
conflict constraints (because a solution is found without encountering con-
flicts), the feedback loop terminates early. This also happens if grounding
takes longer than a specified time limit (--extraction-timeout).

KNOWLEDGE GENERALIZATION Hypotheses having a high degree or con-
taining too many literals are skipped because proving andminimizing them
takes too long.These thresholds are defined by the user (--max-degree and
--max-number-of-literals).

The current implementation eliminates all terminal(T) literals from
candidate properties. This is because the proof methods do not define goal
conditions, and the terminal predicate would be undefined. Hence, there
is no simple, meaningful way to generalize these literals. A brief experiment
showed that some properties shortened by terminal literals are still prov-
able, even though the success rate is lower than with the other candidates.

Additionally, hypotheses are skipped if they are already subsumed by a
previously proven generalized conflict constraint. Similarly, the set of suc-
cessfully generalized candidates is continuously cleaned up by removing all
the ones that are subsumed by new proven conflict constraints.

Proofs that take too long are aborted, in which case the tested hypothe-



80 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

ses are assumed to be unproven. For this purpose, a configurable time limit
(--hypothesis-testing-timeout) is imposed on every invokation of
gringo and clasp, respectively.

Section 5.2.2 mentioned the fluent closure, an optimization that reduces
the set of fluents considered by the state generator. An according option con-
trols whether this optimization is enabled (--fluent-closure-usage).

In one scenario, all available candidates are tested before extracting new
learned conflict constraints (called the TestAll policy). Instead, knowledge
extraction may be restarted after each successfully proven candidate (the
Find First testing policy). The latter approach contributes generalized con-
flict constraints to the feedback extraction step immediately—hence, future
candidate propertiesmight containmore useful information.The implemen-
tation supports both testing policies (with --testing-policy).

MINIMIZATION Observations show that by minimization, many proven con-
flict constraints can be reduced to few literals—often just two or three. For
this reason, theminimization procedure of the feedback loop is slightly opti-
mized. After successfully eliminating a literal, the procedure tries to remove
the next two literals simultaneously. The size of this elimination window in-
creases by one again after every successful minimization step. Whenever a
minimization step is unsuccessful, the window size resets to 1. Especially
with conflict constraints containingmany literals, this optimization can save
many minimization steps.

6.2 EVALUATION

Section 6.1.2 showed that the presented implementation of the feedback loop
can be configured in many different ways. However, there are currently no
experience values to rely upon when deciding on such aspects of the feed-
back loop. This section presents a pilot study to get a first impression of the
utility of the feedback loop and to find reasonable configurations.



6.2 EVALUATION 81

Apart from gaining general insights, this study analyzes three configura-
tion options in particular. The first one is the choice of the proof method
that validates candidate properties—the proof by induction or the simpli-
fied proof. Second, this study assesses the effect of minimizing conflict con-
straints after proving them. As a third configuration option, this study in-
vestigates whether disabling the fluent-closure optimization has a negative
effect on the feedback loop’s utility.

The evaluation procedure is detailed in Section 6.2.1. Then, Section 6.2.2
describes the problem instances and configurations analyzed in this study.
Section 6.2.3 finally presents the results and analyzes the impact of the three
mentioned configuration options: the proof method, the use of minimiza-
tion, and the fluent-closure optimization.

6.2.1 EXPERIMENTAL DESIGN

Thebenchmark procedure is divided in two parts.The first part executes the
feedback loop using the implementation from Section 6.1 and writes all the
successfully generalized conflict constraints to a separate file.

In all configurations, the following options of the feedback loop are fixed:

--testing-policy=TestAll --constraints-to-extract=16384

--constraints-to-prove=1024 --max-degree=10

--max-number-of-literals=50 --extraction-timeout=600

--hypothesis-testing-timeout=10

The testing policy is set to TestAll because initial experiments proved Find
First to be infeasible due to how frequently knowledge was extracted. Ad-
ditionally, --horizon is fixed to the instances’ respective minimum plan
lengths, which were determined before running the benchmark.

The second part of the benchmark procedure assesses the benefit of gen-
eralized knowledge feedback in an offline procedure. For this purpose, the



82 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

instance is enrichedwith the first n generalized conflict constraints recorded
in the first part. Then, the solving time of the enriched instance is measured
and set in relation to the baseline solving time (obtained with the unmodi-
fied instance). Starting with n = 8, the benchmark procedure increases n to
1024 in exponential steps, similar to the experimental design in Section 4.2.
The planning horizon is set to the same value as specified by --horizon.

BENCHMARK ENVIRONMENT Thebenchmark environmentwas identical to
the one listed in Section 4.2. Again, the benchmark jobs used all CPUs ex-
clusively. The feedback loop was implemented in C++14 with POSIX pipes
to communicate with clasp and gringo.

6.2.2 ANALYZED PROBLEMS AND FACTORS

PROBLEMS Five different problems are part of the study: Blocks World,
Elevator, FreeCell, Logistics, and Depots. The PDDL problem encod-
ings stem from the hclasp benchmark1 and were transformed to ASP facts
with the help of plasp 2.0.0.

The programs were manually extended by fluent predicates, which are
required by the implemented proof methods. These annotations are not au-
tomatically generated by plasp currently, even though plasp provides a re-
spective interface and an implementation would be uncomplicated.

INSTANCES Thebenchmark comprises 25 instances in total, 5 for each prob-
lem.The small size of the test set is a result of the fact that the feedback loop
has a comparably long runtime. The instances were partly taken from the
hclasp experiments if the baseline solving time was below 10 seconds. Be-
cause this yielded only 19 usable instances, another 6 instances were manu-
ally created for Logistics and Depots.

1The original PDDL and generated ASP encodings can be found on the hclasp website,
http://www.cs.uni-potsdam.de/hclasp/#experiments3

http://www.cs.uni-potsdam.de/hclasp/#experiments3


6.2 EVALUATION 83

METRIC One purpose of this study is to estimate the influence of generalized
knowledge feedback on the solver’s performance. To that end, the second
part of the benchmark procedure measures the solving times after enrich-
ing the instance with the first n successfully generalized conflict constraints
(with multiple tested numbers n, as mentioned earlier). These are then com-
pared to a baseline measurement, which is obtained by solving the original
instance. The solving time measurements are performed identically as de-
scribed in Section 4.1, always using Baseline Clasp.

Additional statistics are recorded while executing the feedback loop (in
the first part of the benchmark procedure). This includes the total runtime
of the feedback loop, grounding and solving times required to validate candi-
date properties, the numbers of proven, unproven, and skipped candidates,
information about the tested candidates, and the number of literals elimi-
nated through minimization.

FACTORS This study compares the two proof methods (Induction Proof
and Simplified Proof). Further, the effect of conflict constraint minimiza-
tion is evaluated by enabling or disabling it (Minimization or No Mini-
mization).Third, the study analyzes if disabling the fluent-closure optimiza-
tion leads to a weaker proof (Fluent Closure or No Fluent Closure).

EXPERIMENTAL CONDITIONS To find reasonable configurations of the feed-
back loop, this study tests all four combinations of proof method and mini-
mization usage. In these four experimental conditions, the FluentClosure
optimization is always enabled.

Selecting the Simplified Proof in conjunction with No Fluent Clo-
sure leads to an instance-independent proof (see Section 5.2.4). For this
reason, an additional fifth condition is tested, with Minimization enabled.

The number of generalized constraints selected for feedback is varied be-
tween n = 8 and n = 1024 in exponential steps of 4√2. Together with the base-
linemeasurement, this results in a total of 30 solving timemeasurements per
instance and per configuration.



84 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

6.2.3 RESULTS

For reasons of clarity, the results discussed in this section are aggregated
over all problems. More detailed results are shown in Appendix B.

With Minimization, generalized knowledge feedback helped reducing the
solving time considerably, in some experimental conditions by more than
65%. Figure 6.2 shows one of the configurations where the solver profited
most from generalized knowledge feedback.

On average, validating candidate properties took 148ms of grounding
time and 48ms of solving time (across the experimental conditions with
the Fluent Closure optimization). 59.6% of the proofs were successful—a
high number considering the experimentswithmanually crafted hypotheses
discussed in Section 5.2.4. The feedback loop terminated after an average of
26 minutes. In 7 of the 125 runs, the feedback loop stopped early because of
grounding timeouts within the knowledge extraction step. These timeouts
occurred in cases where all candidates were already tested and new learned
conflict constraints needed to be extracted.

PROOF BY INDUCTION VS. SIMPLIFIED PROOF Both proof methods were
well-suited for validating candidate properties. On average, the Proof by
Induction was able to successfully prove 60.5% of all candidate properties
(not counting proofs required for minimizing conflict constraints).The Sim-
plified Proof had a success rate of 58.8%. As Figure 6.3 shows, both proof
methods also performed similar with respect to generalized knowledge feed-
back. With Blocks World and Depots, the results were almost identical
between the two proof methods.

However, the SimplifiedProof required only 45% (30ms) of the solving
time that the Proof by Induction needed (67ms) to validate candidate
properties. This observation can be traced back to the fact that the Proof
by Induction performs two separate proofs for the induction base and step.
Similarly, the grounding time was 93ms with the Simplified Proof and



6.2 EVALUATION 85

baseline

number of selected generalized conflict constraints

so
lv

in
g 

ti
m

e

16 32 64 128 512 1024

100 %

0 %

300 %

200 %

256

Figure 6.2: One of the best configurations (Simplified Proof, Minimiza-
tion, and Fluent Closure). The x axis denotes the number of
generalized properties added to the instance.The y axis shows the
solving time relative to the baseline (gray bar), aggregated over
all problems. The error bars are 95% confidence intervals.

(a) Induction, No Minimization (b) Simplified, No Minimization

(c) Induction, Minimization (d) Simplified, Minimization

Figure 6.3: Comparison of the Proof by Induction (left) and the Simpli-
fied Proof (right). Both show similar results, whether NoMini-
mization (top) is applied or Minimization (bottom). However,
Minimization leads to considerably reduced solving times. All
shown configurations use the Fluent Closure.



86 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

205mswith the Proof by Induction. In turn, the feedback loop had a 48%
lower total runtime with the Simplified Proof.

Aside from these performance considerations, the other recorded statis-
tics evinced no noteworthy differences between the two proof methods.

MINIMIZATION Figure 6.3 also shows that Minimization is generally a bet-
ter choice than No Minimization. In fact, the conflict constraints general-
ized with No Minimization hardly reduced the solving times at all.

While the feedback loop performed 1546 proofs on average with NoMin-
imization, 11 480 were required when Minimization was enabled (about
7.4 times as many). This difference is reflected by the total runtime of the
feebdack loop—on average, it was 4.5 times higher with Minimization.

Throughminimization, 57.6% of all literals inminimized properties were
successfully eliminated. The average tested hypothesis contained 8.6 literals
before minimization.This coincides with prior observations that many con-
flict constraints can be reduced to few literals.

With NoMinimization, 4.0% of the candidates were subsumed by other
ones. Enabling Minimization increased this amount to 10.5%. Thus, min-
imization apparently leads to stronger conflict constraints. This seems to be
an explanation of why the solver profited more from generalized knowledge
feedback in experimental conditions with Minimization.

DISABLING THE FLUENT CLOSURE Figure 6.4 illustrates the results for the
Simplified Proof with Minimization, once with Fluent Closure en-
abled and once with No Fluent Closure. As the results show, disabling
the fluent closure has only little effect on the strength of the proof.

The feedback loop terminated early with all Logistics instances because
of grounding timeouts while extracting learned knowledge (after running
out of candidates).This is due to the fact that with No Fluent Closure, hy-
potheses of higher degreewere eventually generalized, some ofwhich caused
timeouts while grounding the enriched instance. Due to this, the number
of timeouts that occurred in the generalized knowledge feedback step also



6.2 EVALUATION 87

(a) Fluent Closure (b) No Fluent Closure

Figure 6.4: Disabling the Fluent Closure has little effect in the tested con-
figurations (Simplified Proof with Minimization). The in-
creased solving times at the right end of the x axis are mostly
due to timeouts while grounding the enriched instances. Affected
measurements were penalized with 6000 seconds.

increased from 2.4% to 5.2% when disabling the fluent closure, affecting
measurements with 362 or more selected generalized conflict constraints.

The amount of successfully proven candidate properties was lower with-
out (30.6%) than with the Fluent Closure optimization (54.0%). Con-
versely, No Fluent Closure led to lower candidate validation times (17ms
for solving, 70ms for grounding) than when using the Fluent Closure
(27ms for solving, 85ms for grounding). Apparently, this compensated for
the lower proof rate—on average, the feedback loop terminated after 1660 s
with No Fluent Closure (instead of 1663 s with Fluent Closure).

Aside from that, generalized knowledge feedback produced comparable
results with and without the Fluent Closure.

6.2.4 DISCUSSION

With minimization enabled, generalized knowledge feedback often reduced
solving times. Still, some generalized conflict constraints that were proven
late in the process seem to have caused timeouts when adding them to the
instances. Such issues can be addressed by skipping properties that would
result in high grounding times, for instance, with a heuristic or bymeasuring



88 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

the grounding time separately.
When disabling the fluent-closure optimization, the simplified proof is

instance-independent (as explained in Section 5.2.4). In this setting, the Sim-
plified Proof becomes interesting because it enables offline learning pro-
cedures where knowledge is transferred fromone instance to other instances
of the same problem encoding. Beyond that, the results show that with such
a configuration, knowledge generalization is similarly beneficial for solvers
than the other examined configurations. These considerations give rise to
the question how knowledge generalization can be exploited in practice.

6.3 PRACTICAL APPLICATIONS

Seeing that enriching instances with generalized knowledge increases solv-
ing performance, it would be desirable for practical applications tomake use
of knowledge generalization. However, running the feedback loop typically
requires more time than solving an instance directly. Still, the presented ap-
proaches may be employed in offline procedures where knowledge is gener-
alized in a preparation step and preserved to reuse it at a later point.

One such application could reuse generalized knowledge obtained from
an instance by transferring it to other instances of the same domain and prob-
lem encoding. This is already enabled by the implementation with the spe-
cial configuration mentioned earlier (Simplified Proof, Minimization,
No Fluent Closure). For instance, knowledge can be generalized by the
feedback loop given a Ricochet Robots instance. With this knowledge, fu-
ture Ricochet Robots instances can be solved faster if the robots’ start and
goal positions are changed (but not the wall placement or board size).

To analyze the utility of transferring generalized knowledge, an additional
experiment was carried out. To this end, copies of the instances from Sec-
tion 6.2 were created by altering their initial states or goal situations, but
keeping the domains unchanged. Then, knowledge was extracted and gen-
eralized with the feedback loop, using the original set of instances from Sec-



6.3 PRACTICAL APPLICATIONS 89

baseline

number of selected generalized conflict constraints

so
lv

in
g 

ti
m

e

16 32 64 128 512 1024

100 %

0 %

300 %

200 %

256

Figure 6.5: In this experiment, knowledge was learned and generalized with
the instances from Section 6.2. The generalized conflict con-
straints were then transferred to copies of the instances with a
changed initial state or goal situation. Apparently, generalized
knowledge is also useful when transferring it to other instances of
the same domain, since the results are comparable to Figure 6.2.

tion 6.2. Finally, the effect of transferring generalized knowledge was as-
sessed by gradually enriching the modified instances with the generalized
constraints obtained with the original ones andmeasuring the solving times.

Figure 6.5 shows the results of this experiment. Surprisingly, generalized
conflict constraints appear to be almost as useful when transferring knowl-
edge to other instances as they are when enriching the original instances
(compare Section 6.2.3). Consequently, knowledge generalization through
the presented feedback loop may indeed be valuable in practice.

This might be particularly interesting for use cases where large numbers
of instances need to be solved.There, precomputing a set of generalized con-
flict constraints might be worthwile, even if the solving times are reduced by
just a small extent. Furthermore, for systems with scarce resources, it can be
sensible to generalize knowledge beforehand. Even if the offline generaliza-
tion part takes long, the reduced cost on the live systems might pay off.



90 CHAPTER 6 GENERALIZED KNOWLEDGE FEEDBACK

Another offline application could learn generalized knowledge with small
instances in order to apply it to large instances later. There, the benefit of
reusing knowledge could be evenmore noticeable, as conflict constraints are
generalized faster with small instances, while the impact on large instances
could be bigger. To implement this application, support for generalization
over object domains is necessary, since temporally generalized conflict con-
straints are still bound to specific object identifiers.



7
CONCLUSIONS AND
FUTURE WORK

This chapter summarizes the most important contributions of this thesis—
on a high level as well as concerning the implementation—in Section 7.1.
Then, related work is discussed in Section 7.2. Section 7.3 completes this the-
sis with an outline of possible future work.

7.1 CONTRIBUTIONS

The present thesis explored multiple opportunities to reuse learned knowl-
edge and discussed their benefits. The first part analyzed how answer set
solvers benefit from reusing learned conflict constraints directly. For this
purpose, test instances were solved while recording the conflict constraints
learned by the solver. Then, the solving time was measured with the origi-
nal test instances and again after enriching them with selected conflict con-



92 CHAPTER 7 CONCLUSIONS AND FUTURE WORK

straints. The results reflected that answer set solvers generally benefit from
this type of knowledge feedback.

The second part of this thesis presented unassisted methods for generaliz-
ing learned knowledge in planning problems. Knowledge generalizationwas
achieved by first producing candidates for generalized conflict constraints
and validating these afterward. The candidates were obtained by extending
the scope of the learned conflict constraints over the temporal domain. An
evaluation of reusing generalized knowledge—similar to the first study with
direct knowledge feedback—showed that solvers often benefit from enrich-
ing instances with generalized conflict constraints.

Ultimately, this thesis detailed how knowledge can be generalized in such
a way that it becomes independent of a particular problem instance.This en-
ables offline applications that first record and generalize knowledge and then
transfer it to future instances of the same domain (but with different initial
states or goal conditions) in order to solve them faster. A pilot study showed
that instances are indeed solved faster when reusing generalized knowledge
obtained from another instance.

On the implementation side, this thesis introduced multiple novel meth-
ods and algorithms that aid the process of generalizing knowledge. First, the
solver clasp was extended to record learned conflict constraints as rules in
ASP syntax in order to reuse them externally. For this purpose, the custom
named-literals resolution scheme was developed. This resolution scheme
guarantees the recorded conflict constraints to contain named literals only
so that the rules are well-formed.

To validate candidates, an automated proof by inductionwas adopted. Ad-
ditionally, a novel proof method was introduced—a simplification of the
proof by induction that is faster by a factor of about 2, while leading to sim-
ilar results. Most importantly, this proof method enables knowledge to be
generalized in an instance-independent way.

Finally, an algorithmwas implemented that automatically extracts learned
knowledge and generalizes it using the concepts explained in this thesis.



7.2 RELATED WORK 93

7.2 RELATED WORK

Concerning the validation of candidate properties, Schiffel and Thielscher
observed that many properties could not be proven by themselves, but only
together with other properties. To cover such cases, the authors suggest ex-
tending their proof method to a simultaneous induction [28]. However, test-
ing combinations of properties renders the proof much more complex.

To prove candidate properties to be invariants, Lin presented a method
that tests the candidates against a small set of small problem instances by
an exhaustive search covering all stable models [19]. Invariants returned by
this procedure are not necessarily correct in the general case. Furthermore,
the set of tested properties must be manually specified by a user. Similar to
Schiffel and Thielscher’s proposal [28], Lin suggests testing conjunctions of
properties, as they might not be provable alone.

To avoid the manual specification of candidate properties that shall be
tested, Li et al. describe a system that enumerates all possible 2-literal formu-
las [18].The formulas are then automatically tested and, if invalid, iteratively
strengthened until they become invariant. By first testing properties against
a small set of small problem instances (inspired by Lin [19]), the authors
improve the efficiency of falsifying incorrect properties. Still, the method is
incomplete despite its soundness.

Invariants discovered like this could be used to strengthen the proofmeth-
ods of the generalized knowledge feedback loop. Similar to the idea of prov-
ing multiple candidates simultaneously, additional invariants might allow
certain properties to be proven that could not be proven otherwise.

Rintanen outlined another strategy for discovering invariants within plan-
ning problems [25]. It starts with a candidate invariant that contains all 2-
literal clauses that are satisfied in the initial state of a problem.Then, clauses
are removed progressively if they are violated by the effect of an action.

Rintanen presented a secondmethod for synthesizing invariants [26].The
method starts with a set of candidate properties that are satisfied in the initial



94 CHAPTER 7 CONCLUSIONS AND FUTURE WORK

state and iteratively checks that these are not violated by subsequent action.
If this is the case, the affected candidate properties are removed from the set
and replaced by weaker ones.

A further method for finding invariants in planning problems proposed
by Rintanen relies on the regression operator [27]. This operator computes
the weakest preconditions to a state to guarantee that some property holds
in the subsequent state. Also starting with candidate properties that hold in
the initial state of a problem instance, the algorithm iteratively eliminates
invalid properties.These are detected by applying the regression operator to
their negation. If the regression is satisfied, then there is a predecessor state
that leads to a violation of the property after applying some action. Elimi-
nated properties are once again replaced with weaker ones (in this case, dis-
junctions with other properties).

The three algorithms described by Rintanen share two limitations: The
methods do not find all invariants and become inefficient when extending
them from 2-literal to n-literal invariants, already with n = 4.

7.3 FUTURE WORK

Concerning knowledge extraction (Chapter 3), future researchmay evaluate
alternatives to the presented named-literals resolution scheme. Further opti-
mizations of the resolution scheme’s implementation might also reduce the
runtime of the generalized knowledge feedback loop, in which knowledge
extraction is responsible for a considerable amount of time.

Asmentioned in Section 5.2.4, the proofmethodsmay be strengthened by
manually specifying state constraints, which eliminate invalid states. In this
way, the state generators used in the proof by induction and the simplified
proof avoid generating such invalid states. Thus, less false counterexamples
are potentially found and more candidates can be proven. Instead of manu-
ally specifying such state constraints, they may be obtained with one of the
discovery methods mentioned in Section 7.2.



7.3 FUTURE WORK 95

Futhermore, proving candidates simultaneously (as suggested by Schif-
fel and Thielscher [28]) could make the proof stronger in a similar fashion.
Further studies can be conducted to find out whether state constraints and
simultaneous proofs actually lead to improved validation methods or more
useful generalized knowledge.

In this thesis, learned conflict constraints were generalized over the tem-
poral domain. Additionally, generalizing knowledge over object domains
may be implemented (see Section 5.1.1). This might make the generalized
conflict constraints independent of some domain properties, such as spe-
cific object names or instance sizes. Ultimately, knowledge generalized with
small instances of a problem might be transferred to bigger ones, possibly
reducing the solving times of large instances.

Aside from generalizing conflict constraints over the temporal domain,
proven candidates are minimized in a seperate procedure in the presented
implementation of the generalized knowledge feedback loop.Theminimiza-
tion technique explained in Section 5.1.2 may be improved further to reduce
the necessary number of steps to find the minimum subset of a conflict con-
straint, making minimization more feasible in practice.

Section 6.1.2 introduced many configuration options of the generalized
knowledge feedback loop and evaluated several of the options to find rea-
sonable configurations. In future work, more configurations may be ana-
lyzed with respect to different use cases—for instance, to make generalized
knowledge more useful or to obtain generalized conflict constraints faster.
Furthermore,more problems and instances should be studied to get a deeper
understanding of generalized knowledge feedback.

In the evaluation of the feedback loop, several problem instances encoun-
tered grounding timeouts after certain generalized conflict constraints with
a high degree were added (see Chatper 6.2.3). A future filtering step could de-
tect and eliminate these infeasible properties (for instance, by adding them
and testing them with a timeout or a heuristic). Additionally, the implemen-
tation of the feedback loop can be improved by incorporating incremental



96 CHAPTER 7 CONCLUSIONS AND FUTURE WORK

grounding to avoid grounding similar sets of rules over and over.
For large planning problems, it could be possible to make the general-

ization step a part of the solving procedure. In other words, a solver could
attempt to generalize recently learned conflict constraints in parallel to the
actual solving procedure. If validating the candidate properties does not take
too long, enriching the currently solved program with additional general-
ized properties might prune the search space considerably and possibly in-
crease the solving performance.



REFERENCES

[1] GillesAudemard andLaurent Simon. “Predicting LearntClausesQual-
ity in Modern SAT Solvers”. In: Proceedings of the 21st International
Joint Conference on Artificial Intelligence. AAAI Press, 2009, pp. 399–
404.

[2] Chitta Baral. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press, 2003.

[3] Roberto J. Bayardo Jr. and Robert C. Schrag. “Using CSP Look-Back
Techniques to Solve Real-World SAT Instances”. In: Proceedings of the
14th National Conference on Artificial Intelligence and 9th Conference
on Innovative Applications of Artificial Intelligence. AAAI Press, 1997,
pp. 203–208.

[4] Keith L. Clark. “Negation as Failure”. In: Proceedings of the Symposium
on Logic and Data Bases. Springer, 1978, pp. 293–322.

[5] Martin Davis, George Logemann, and Donald Loveland. “AMachine
Program for Theorem-Proving”. In: Communications of the ACM 5.7
(1962), pp. 394–397.

[6] MartinDavis andHilary Putnam. “AComputing Procedure forQuan-
tificationTheory”. In: Journal of the ACM 7.3 (1960), pp. 201–215.

[7] Niklas Eén andNiklas Sörensson. “An Extensible SAT-Solver”. In: Pro-
ceedings of the 6th International Conference on Theory and Applica-
tions of Satisfiability Testing. Springer, 2004, pp. 502–518.



98 REFERENCES

[8] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach to
theApplication ofTheoremProving to Problem Solving”. In:Artificial
Intelligence 2.3–4 (1971), pp. 189–208.

[9] Martin Gebser et al.Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence andMachine Learning. Morgan & Claypool
Publishers, 2012.

[10] Martin Gebser et al. “Conflict-Driven Answer Set Solving”. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelli-
gence. AAAI Press, 2007, pp. 386–392.

[11] Martin Gebser et al. “plasp: A Prototype for PDDL-Based Planning
in ASP”. In: Proceedings of the 11th International Conference on Logic
Programming and Nonmonotonic Reasoning. Springer, 2011, pp. 358–
363.

[12] Michael Gelfond and Vladimir Lifschitz. “The Stable Model Seman-
tics for Logic Programming”. In: Proceedings of the 5th International
Conference and Symposium on Logic Programming. MIT Press, 1988,
pp. 1070–1080.

[13] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
Theory and Practice. Elsevier, 2004.

[14] Malik Ghallab et al. PDDL—The Planning Domain Definition Lan-
guage. Manual produced by theAIPS-98 PlanningCompetitionCom-
mittee. 1998.

[15] SebastianHaufe, Stephan Schiffel, andMichaelThielscher. “Automated
Verification of State Sequence Invariants in General Game Playing”.
In: Artificial Intelligence 187 (2012), pp. 1–30.

[16] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast
Plan Generation Through Heuristic Search”. In: Journal of Artificial
Intelligence Research 14 (2001), pp. 253–302.



REFERENCES 99

[17] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Tradeoffs
in the Empirical Evaluation of Competing Algorithm Designs”. In:
Annals of Mathematics and Artificial Intelligence 60.1-2 (2010), pp. 65–
89.

[18] Naiqi Li, Yi Fan, andYongmei Liu. “Reasoning about StateConstraints
in the Situation Calculus”. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence. AAAI Press, 2013, pp. 997–
1003.

[19] Fangzhen Lin. “Discovering State Invariants”. In: Proceedings of the
9th International Conference on Principles of Knowledge Representa-
tion and Reasoning. AAAI Press, 2004, pp. 536–544.

[20] Nathaniel Love et al. General Game Playing: Game Description Lan-
guage Specification. Technical report of the Stanford Logic Group at
Stanford University (LG-2006-01). 2006.

[21] João P. Marques-Silva and Karem A. Sakallah. “GRASP: A Search
Algorithm for Propositional Satisfiability”. In: IEEE Transactions on
Computers 48.5 (May 1999), pp. 506–521.

[22] David G. Mitchell. “A SAT Solver Primer”. In: Bulletin of the EATCS
85 (2005), pp. 112–132.

[23] Nilan Norris. “The Standard Errors of the Geometric and Harmonic
Means and Their Application to Index Numbers”. In: The Annals of
Mathematical Statistics 11.4 (1940), pp. 445–448.

[24] MaxOstrowski et al. “BooleanNetwork Identification fromMultiplex
Time Series Data”. In: Proceedings of the 13th International Conference
on ComputationalMethods in Systems Biology. Springer, 2015, pp. 170–
181.

[25] Jussi Rintanen. “APlanningAlgorithmNotBased onDirectional Search”.
In: Proceedings of the 6th International Conference on Principles of



100 REFERENCES

Knowledge Representation and Reasoning. Morgan Kaufmann, 1998,
pp. 617–625.

[26] Jussi Rintanen. “An Iterative Algorithm for Synthesizing Invariants”.
In:Proceedings of the 17thNational Conference onArtificial Intelligence
and 12thConference on InnovativeApplications of Artificial Intelligence.
AAAI Press, 2000, pp. 806–811.

[27] Jussi Rintanen. “Regression for Classical and Nondeterministic Plan-
ning”. In: Proceedings of the 18th European Conference on Artificial In-
telligence. IOS Press, 2008, pp. 568–572.

[28] Stephan Schiffel and Michael Thielscher. “Automated Theorem Prov-
ing forGeneral GamePlaying”. In:Proceedings of the 21st International
Joint Conference on Artificial Intelligence. AAAI Press, 2009, pp. 911–
916.

[29] Tommi Syrjänen. Lparse 1.0 User’s Manual. 1999.

[30] Michael Thielscher and Sebastian Voigt. “A Temporal Proof System
for General Game Playing”. In: Proceedings of the 24th AAAI Confer-
ence on Artificial Intelligence. AAAI Press, 2010, pp. 1000–1005.

[31] Lintao Zhang et al. “Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver”. In: Proceedings of the 2001 International Confer-
ence onComputer-AidedDesign. IEEEComputer Society, 2001, pp. 279–
285.



A
RESULTS: DIRECT

KNOWLEDGE FEEDBACK

This appendix contains detailed results of the study in Chapter 4 for each of
the seven analyzed problems.

Each chart shows the results of one of the six analyzed selection orders in
analogy to Figure 4.3 (a). The x axis denotes the number of selected conflict
constraints and the y axis shows the solving time relative to the baseline (gray
bar). The error bars are 95% confidence intervals.

The additional statistics are aggregated over the respective instances.



102 APPENDIX A RESULTS: DIRECT KNOWLEDGE FEEDBACK

A.1 RICOCHET ROBOTS

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 6.38 s

extracted conflict constraints 2570
literals per conflict constraint 97.0

timeouts (extraction) 0
timeouts (feedback) 0



A.2 LABYRINTH 103

A.2 LABYRINTH

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 5.07 s

extracted conflict constraints 5008
literals per conflict constraint 48.5

timeouts (extraction) 0
timeouts (feedback) 0



104 APPENDIX A RESULTS: DIRECT KNOWLEDGE FEEDBACK

A.3 HANOI TOWER

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 5.09 s

extracted conflict constraints 195 850
literals per conflict constraint 16.6

timeouts (extraction) 0
timeouts (feedback) 0



A.4 SOLITAIRE 105

A.4 SOLITAIRE

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 4.88 s

extracted conflict constraints 30 166
literals per conflict constraint 38.5

timeouts (extraction) 0
timeouts (feedback) 0



106 APPENDIX A RESULTS: DIRECT KNOWLEDGE FEEDBACK

A.5 HAMILTONIAN CYCLE

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 4.92 s

extracted conflict constraints 3244
literals per conflict constraint 171.5

timeouts (extraction) 0
timeouts (feedback) 0



A.6 GRAPH COLORING 107

A.6 GRAPH COLORING

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 5.04 s

extracted conflict constraints 134 368
literals per conflict constraint 54.0

timeouts (extraction) 0
timeouts (feedback) 0



108 APPENDIX A RESULTS: DIRECT KNOWLEDGE FEEDBACK

A.7 KNIGHT CYCLE

(a) First (b) Last

(c) Shortest (d) Longest

(e) Lowest LBD (f) Highest LBD

instances 100
baseline solving time 4.72 s

extracted conflict constraints 405
literals per conflict constraint 24.4

timeouts (extraction) 0
timeouts (feedback) 0



B
RESULTS: GENERALIZED
KNOWLEDGE FEEDBACK

This appendix contains detailed results of the study in Section 6.2 for each
of the five analyzed problems.

Each chart shows the results of one of the five analyzed configurations in
analogy to Figure 6.2. The x axis denotes the number of generalized proper-
ties added to the instance. The y axis shows the solving time relative to the
baseline (gray bar). Violet bars indicate that at least one contained measure-
ment was penalized by PAR-10 due to a timeout. The error bars are 95%
confidence intervals.

The additional statistics are aggregated over the respective instances.



110 APPENDIX B RESULTS: GENERALIZED KNOWLEDGE FEEDBACK

B.1 BLOCKS WORLD

(a) Ind., No Min., Fl. Cl. (b) Simpl., No Min., Fl. Cl.

(c) Ind., Min., Fl. Cl. (d) Simpl., Min., Fl. Cl.

(e) Simpl., Min., No Fl. Cl.

(a) (b) (c) (d) (e)

instances 5 5 5 5 5
total runtime 261 s 188 s 1462 s 745 s 738 s

tested candidates 1400 1400 1978 1978 1978
successful proofs 74.0% 74.0% 51.8% 51.8% 51.8%

proof grounding time 74ms 36ms 68ms 33ms 33ms
proof solving time 7ms 3ms 8ms 4ms 4ms
candidate degree 1.4 1.4 2.5 2.5 2.5
candidate literals 12.1 12.1 14.1 14.1 14.1

minimized literals — — 64.6% 64.6% 64.6%
extraction time 12.1 s 11.7 s 11.5 s 11.5 s 11.9 s

extraced constraints 15 349 15 349 15 251 15 251 15 251
timeouts (feedback) 4.0% 4.0% 0.0% 0.0% 0.0%



B.2 ELEVATOR 111

B.2 ELEVATOR

(a) Ind., No Min., Fl. Cl. (b) Simpl., No Min., Fl. Cl.

(c) Ind., Min., Fl. Cl. (d) Simpl., Min., Fl. Cl.

(e) Simpl., Min., No Fl. Cl.

(a) (b) (c) (d) (e)

instances 5 5 5 5 5
total runtime 223 s 192 s 648 s 335 s 370 s

tested candidates 1455 1458 2063 2071 2071
successful proofs 70.4% 70.2% 49.6% 49.4% 49.4%

proof grounding time 35ms 17ms 39ms 17ms 21ms
proof solving time 3ms 1ms 3ms 2ms 2ms
candidate degree 1.0 1.0 1.4 1.4 1.4
candidate literals 6.8 6.8 7.4 7.4 7.4

minimized literals — — 50.8% 50.6% 50.6%
extraction time 4.1 s 4.0 s 4.0 s 4.1 s 4.1 s

extraced constraints 16 384 16 384 16 384 16 384 16 384
timeouts (feedback) 12.0% 12.7% 10.0% 11.3% 11.3%



112 APPENDIX B RESULTS: GENERALIZED KNOWLEDGE FEEDBACK

B.3 FREECELL

(a) Ind., No Min., Fl. Cl. (b) Simpl., No Min., Fl. Cl.

(c) Ind., Min., Fl. Cl. (d) Simpl., Min., Fl. Cl.

(e) Simpl., Min., No Fl. Cl.

(a) (b) (c) (d) (e)

instances 5 5 5 5 5
total runtime 2356 s 1325 s 12 259 s 5988 s 5270 s

tested candidates 1675 1695 1687 1672 1694
successful proofs 62.3% 61.3% 60.7% 61.3% 60.5%

proof grounding time 776ms 354ms 741ms 335ms 311ms
proof solving time 300ms 133ms 298ms 131ms 94ms
candidate degree 1.0 1.0 1.0 1.0 1.0
candidate literals 10.5 10.4 10.5 10.3 9.9

minimized literals — — 77.5% 77.1% 76.5%
extraction time 366.8 s 374.4 s 292.9 s 302.8 s 322.5 s

extraced constraints 16 958 16 958 14 381 14 700 15 588
timeouts (feedback) 0.0% 0.0% 0.0% 0.0% 0.0%



B.4 LOGISTICS 113

B.4 LOGISTICS

(a) Ind., No Min., Fl. Cl. (b) Simpl., No Min., Fl. Cl.

(c) Ind., Min., Fl. Cl. (d) Simpl., Min., Fl. Cl.

(e) Simpl., Min., No Fl. Cl.

(a) (b) (c) (d) (e)

instances 5 5 5 5 5
total runtime 340 s 282 s 1231 s 631 s 1320 s

tested candidates 1795 1877 1977 2348 7830
successful proofs 49.9% 47.7% 52.0% 43.6% 7.7%

proof grounding time 65ms 32ms 68ms 34ms 45ms
proof solving time 8ms 5ms 8ms 5ms 8ms
candidate degree 2.8 2.8 2.9 3.0 5.7
candidate literals 7.2 7.3 7.6 7.6 13.7

minimized literals — — 28.2% 26.1% 41.4%
extraction time 6.8 s 7.0 s 7.1 s 6.6 s 8.0 s

extraced constraints 10 271 10 271 13 673 11 688 13 547
timeouts (feedback) 18.0% 8.7% 0.0% 0.7% 14.7%



114 APPENDIX B RESULTS: GENERALIZED KNOWLEDGE FEEDBACK

B.5 DEPOTS

(a) Ind., No Min., Fl. Cl. (b) Simpl., No Min., Fl. Cl.

(c) Ind., Min., Fl. Cl. (d) Simpl., Min., Fl. Cl.

(e) Simpl., Min., No Fl. Cl.

(a) (b) (c) (d) (e)

instances 5 5 5 5 5
total runtime 276 s 178 s 1230 s 617 s 605 s

tested candidates 1354 1355 1419 1420 1811
successful proofs 76.3% 76.3% 72.2% 72.1% 56.5%

proof grounding time 104ms 50ms 95ms 45ms 48ms
proof solving time 20ms 10ms 21ms 10ms 14ms
candidate degree 1.2 1.2 1.3 1.3 1.6
candidate literals 6.6 6.6 7.5 7.5 9.3

minimized literals — — 55.4% 55.3% 59.7%
extraction time 10.2 s 10.6 s 8.5 s 8.6 s 10.2 s

extraced constraints 14 084 14 084 12 061 12 061 14 075
timeouts (feedback) 0.0% 0.0% 0.0% 0.0% 0.0%



DECLARATION

I hereby declare that the present thesis is my original work and it has been
written by me in its entirety. I have acknowledged all the sources of informa-
tion that have been used in this thesis.

Hiermit erkläre ich, dass ich die gesamte vorliegende Arbeit selbstständig
verfasst habe. Ich habe sämtliche in dieser Arbeit verwendeten Quellen als
solche kenntlich gemacht.

Patrick Lühne
Potsdam, September 2015


	Contents
	Abstract
	Zusammenfassung
	1 Introduction
	2 Background
	3 Knowledge Extraction
	4 Direct Knowledge Feedback
	5 Knowledge Generalization
	6 Generalized Knowledge Feedback
	7 Conclusions and Future Work
	References
	A Results: Direct Knowledge Feedback
	B Results: Generalized Knowledge Feedback

